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We propose a Landauerlike theory for nonlinear transport in networks of one-dimensional interact-
ing quantum wires (Luttinger liquids). A concrete example of current experimental focus is given by
carbon nanotube Y junctions. Our theory has three basic ingredients that allow one to explicitly solve
this transport problem: (i) radiative boundary conditions to describe the coupling to external leads,
(ii) the Kirchhoff node rule describing charge conservation, and (iii) density matching conditions at
every node.
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FIG. 1 (color online). Schematic view of a Y junction. QWs

N � 4 has been realized by several groups using two
crossed nanotubes [14], providing another interesting

extend from adiabatically contacted reservoirs with electro-
chemical potential �i at x � �L to the node at x � 0.
The Landauer-Büttiker approach to transport in meso-
scopic systems has been very successful in describing
noninteracting electrons by using a scattering matrix
formulation [1]. It is an important challenge to generalize
this approach to the case of strongly correlated electrons.
Here we propose such a theory for N-terminal starlike
networks of interacting 1D quantum wires (QWs) de-
scribed by Luttinger liquid (LL) theory. The two-terminal
setup (N � 2) has been formulated and solved previously
[2,3]. However, the step from N � 2 to N � 3, where
three individually contacted QWs meet at a single node
(‘‘Y junction’’), see Fig. 1, is nontrivial yet essential for
the development of a practically useful transport theory
for interacting electrons. Recently, several works ap-
peared where precisely this problem has been under study.
While in Ref. [4] a weakly coupled ‘‘Kondo’’ node was
considered, other authors used perturbation theory in the
hopping [5] and/or the interaction [6]. At the same time, it
has become clear that a more general approach is neces-
sary to go beyond those special situations. Below we
formulate boundary conditions that allow for the explicit
solution of this transport problem. Progress along these
lines is also likely to sharpen our understanding of con-
formal field theory with boundary conditions [7].

This problem is not only of intellectual interest but also
of relevance to transport experiments for carbon nano-
tubes [8]. As has been predicted [9] and observed in a
series of beautiful experiments [10], single-wall nano-
tubes provide a realization of LL physics. Electron-
electron interactions cause remarkably pronounced
non-Fermi liquid behaviors characterized by the standard
LL parameter g � 0:25 (where g � 1 is the noninteract-
ing value). Template-based chemical vapor deposition
[11] and electron beam welding methods [12] allow one
to fabricate and contact nanotube Y junctions, and the
intrinsic nonlinear I-V characteristics of such a device
have been observed recently [13]. In addition, the case
0031-9007=02=89(22)=226404(4)$20.00
application. Furthermore, semiconductor heterostructures
[15] or ultracold trapped atomic gases [16] may allow for
the systematic study of T or Y junctions as well.
Eventually it could even be possible to access the frac-
tional statistics of LL quasiparticles through the noise
properties of such a device, thereby realizing a Hanbury-
Brown-Twiss setup for fractionalized quasiparticles [5].

We study N single-channel spinless QWs at �L<
x< 0 described by LL theory merging at a common
node at x � 0. For simplicity, we assume the same inter-
action constant g and Fermi velocity vF in each QW, with
straightforward generalization also to include spin and
flavor degrees of freedom [9]. Theory then has to address
(i) the inclusion of applied voltage sources and (ii) how a
consistent treatment of the node can be achieved. Let us
start with the first issue. As in the two-terminal case,
adiabatically coupled external reservoirs held at electro-
chemical potentials �i lead to radiative boundary con-
ditions [2] (we put �h � 1)

g�2 � 1

2
�i;R��L� �

g�2 � 1

2
�i;L��L� �

�i

2�vF
; (1)

where �i;R=L�x� is the right/left-moving part of the
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density in QW i. These boundary conditions depend only
on the current injected into each QW from the respective
reservoir, which in turn does not depend on the back-
scattering happening later on at the node or within the
QW. Here we discuss the computation of the nonlinear
conductance matrix normalized to e2=h,

Gij �
h
e
@Ii
@�j

; (2)

where the current Ii flowing through QW i is oriented
towards the node, leaving noise properties to a future
publication. Below applied voltages Ui are defined as

eUi � �i � ���; ��� �
1

N

X
i

�i: (3)

Under this definition, gauge invariance (conductance ma-
trix is invariant under a uniform change of all �i) is
automatically fulfilled if the Gij depend only on the Ui.

Next we address the physics arising at the node x � 0.
Conservation of charge enforces the Kirchhoff node ruleX

i

Ii � 0: (4)

A second requirement at the node is the wave function
matching via the S matrix [17,18]

�L�0� � S�R�0�; (5)

where ��x� � � 1; . . . ;  N� contains the wave functions
for the N QWs, and the outgoing (left-moving) compo-
nents �L are connected to the incoming (right-moving)
states �R via an appropriate N � N matrix S, see, e.g.,
Ref. [19], for specific choices at N � 3. Note that the
scattering matrix in Eq. (5) provides a ‘‘bare’’ (micro-
scopic) description of the node properties, while inter-
actions could dynamically generate some different
boundary condition at low-energy scales.

Unfortunately, a boundary condition like Eq. (5) is
very difficult to handle for correlated electronic systems
and typically does not allow for progress. Here we pro-
ceed differently by constructing a wide class of practi-
cally important S matrices (albeit not all possible ones
[19]) in the following way. We first consider an ideal
system composed of impurity-free QWs symmetrically
connected at the node. Microscopically, the correspond-
ing noninteracting problem could be modeled as N tight-
binding chains with equal hopping matrix element t0,
where the ‘‘last’’ site of each chain is connected to the
common node site via the same t0 and all on-site energies
are equal. Such a node corresponds to the special highly
symmetric S matrix

S �

0
BBB@
�2� N�=N 2=N � � � 2=N

2=N �2� N�=N � � � 2=N
� � � � � � � � � � � �

2=N 2=N � � � �2� N�=N

1
CCCA : (6)

For this S matrix, Eq. (5) directly implies  1�0� � � � � �
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 N�0� for the components of � � �L ��R. Since
phases in  i�0� can be gauged away, a density matching
condition upon approaching the node results,

�1�0� � � � � � �N�0�; (7)

where �i�0� denotes the total electronic density in QW i
close to the node. Remarkably, the conditions (1), (4), and
(7) then allow one to explicitly solve this transport prob-
lem for arbitrary interactions because the condition (7)
does not involve wave function phases but only ampli-
tudes. To arrive at more general S matrices, in a second
step we then consider additional impurities in the differ-
ent QWs displaced slightly away from the node. Inclusion
of impurities does not cause conceptual difficulties, and
such a modeling allows one to construct all S matrices of
practical interest.

Let us first discuss the ideal node defined by the bare
scattering matrix (6). For g � 1, the conditions (1), (4),
and (7) are in fact equivalent to the standard Landauer-
Büttiker approach. This is easily seen by using the usual
scattering states, e.g., the state injected into QW i � 1:

0
BBB@
 1

 2

� � �

 N

1
CCCA�

0
BBB@
eikx � re�ikx

te�ikx

� � �

te�ikx

1
CCCA; (8)

with reflection (transmission) amplitude r (t). For g � 1,
the boundary conditions (1) are equivalent to a Fermi
distribution for occupying the states (8), while Eq. (4)
gives 1 � r� �N � 1�t. Furthermore, the density match-
ing condition (7) yields j1� rj2 � jtj2. Combining both
equations immediately gives r � �2� N�=N and t �
2=N, and hence reproduces Eq. (6). The conductance
matrix is then

Gii � 1� �1� 2=N�2; Gi�j � ��2=N�2: (9)

Will the conductance matrix for this ideal case be af-
fected by interactions (g < 1)? Based on the two-
terminal case [2], one might suspect that there is no
renormalization because of the Fermi-liquid character
of the leads, and hence Eq. (9) would stay valid for
arbitrary g. However, it turns out that for small applied
voltages and low temperatures, the system always flows to
the disconnected-node fixed point,

Gij � 0: (10)

Thus the only stable generic fixed point of this system for
any g < 1 represents an isolated node weakly connected
toN broken-up QWs, even for an arbitrary S matrix of the
node. The corrections to Eq. (10) due to finite Ui or T are
then sensitive to interactions. This phenomenon is a con-
sequence of the strong correlations in the LL, which here
induce asymptotically vanishing currents even in a per-
fectly clean (impurity-free) system. Equation (10) also
implies that open boundary bosonization [20] allows
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one to access the asymptotic low-energy transport proper-
ties of a QW network.

For arbitrary g and sufficiently far away from the node
such that Friedel oscillations [21] have decayed and the
boundary conditions (1) hold, the left- and right-moving
densities must combine to give

Ii � evF��i;R � �i;L� �
e2

2�

�
Ui �

X
j

TijUj

	
; (11)

�i � �i;R � �i;L �
eg2

2�vF

�
Ui �

X
j

TijUj

	
: (12)

Here the matrix Tij has been defined whose entries depend
on g and all Ui. The Tij reduce to standard Landauer-
Büttiker transmission probabilities for g � 1, but in gen-
eral cannot be interpreted as single-particle quantities. It
is important to stress that Eqs. (11) and (12) are consistent
with both the LL equation of motion and the boundary
conditions (1) for arbitrary Tij. The Kirchhoff node rule
can then be satisfied by requiring

XN
i�1

Tij � 1; (13)

and we now use the density matching conditions (7) to
obtain the Tij and hence the conductance matrix. We
mention in passing that the usual relation

P
j Tij � 1

should not be enforced since gauge invariance under uni-
form potential shifts in all reservoirs has been encoded in
Eq. (3) already.

At this point it is crucial to realize that close to the
node, the density �i�x� will deviate from the spatially
homogeneous value �i in Eq. (12) due to Friedel oscil-
lations. This happens already for g � 1, as can be easily
checked from Eq. (8) and the subsequent solution. The
total density very close to the node is �i�0� � �i �
��i�0�, where ��i�0� is the Friedel oscillation amplitude
at the node location. The 2kF oscillatory Friedel contri-
bution ��i�x� in QW i arises due to interference of the
incoming right movers and the left movers that are back-
scattered at the node. Importantly, left movers that are
transmitted from the other N � 1 QWs into QW i cannot
interfere with the incoming right mover and will there-
fore not contribute to ��i�x�. This implies that ��i�x� is
identical to the corresponding Friedel oscillation in a
two-terminal setup with the same (bare) reflection coef-
ficient as the one induced by the clean node, R �
�1� 2=N�2. Fortunately, this allows us to obtain ��i�0�
in an exact manner using the relation [2]

��i�0� � �
g2eVi
�vF

; (14)

where the ‘‘four-terminal voltage’’ parameter Vi is found
from a self-consistency equation. This equation is explic-
itly given and solved for arbitrary g in Ref. [3], and using
this solution, we also have the pinning amplitude (14) of
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the Friedel oscillation for any value of g. The relation to
the two-terminal problem is not a necessary ingredient
for our calculation, but quite convenient in allowing one
to compute ��i�0� from known results.

For concreteness, in what follows we consider g �
1=2 where this self-consistency equation is quite simple
(kB � 1),

eVi
2TB

� Im 
�
1

2
�
TB � ie�Ui � Vi=2�

2�T

	
; (15)

where  is the digamma function and TB � � 2=!c for
bandwidth!c and impurity strength  of the correspond-
ing two-terminal problem. Specifically, for N � 3, to
match the reflection coefficient of the ideal Y junction,
� =!c � 1=2. The solution to Eq. (15) then yields Vi as a
function of Ui alone, which, however, itself depends on
all the chemical potentials; see Eq. (3). The density
matching conditions (7) are then solved by enforcing

�1� Tjj�Uj � 2Vj � TkjUj

for all pairs k � j � 1; . . . ; N, and with the Kirchhoff
rule we find

Tii�f�jg� �
2� N
N

�
2�N � 1�Vi

NUi
; (16)

Tk�i�f�jg� �
2

N
�

2Vi
NUi

: (17)

Note that the Tij depend only on the applied voltages Ui
but not on the�i. As a result, gauge invariance is ensured.
The relations (16) and (17) represent the complete solu-
tion for the special S matrix (6).

Before proceeding to more general S matrices, let us
discuss these results for the ideal Y junction �N � 3� at
g � 1=2. From Eq. (2), we get

Gii �
8

9

�
1�

@Vi
@Ui

	
�
2

9

X
j�i

�
1�

@Vj
@Uj

	
;

Gj�i �
4

9

�
@Vi
@Ui

� 1

	
�
4

9

�
@Vj
@Uj

� 1

	
�
2

9

�
@Vk
@Uk

� 1

	
;

where i � j � k in the second equation. Note that the
conductance matrix is symmetric. For eUi � T, the lin-
ear conductances follow:

Gij � �2�ij � 2=3�
1� c 0�c� 1=2�
1� c 0�c� 1=2�

;

where c � TB=2�T and  0 is the trigamma function. As
T ! 0, the conductance matrix approaches the stable
fixed point (10), Gij � �T=TB�

2. In general, for g < 1,
we find Gij � �T=TB�

2=g�2 as T ! 0. Since this power
law coincides with the prediction of open boundary boso-
nization around (10), this also provides a consistency
check for our calculation. Corresponding power laws
also govern the nonlinear conductances. This is shown
in Fig. 2 for g � 1=2, depicting G11�U� at different
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FIG. 2 (color online). Nonlinear conductance G11�U� for
N � 3, �1 � EF �U, �2 � �3 � EF, several temperatures
and g � 1=2.
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temperatures. In the T � 0 limit, G11 �U2. Clearly,
interactions have a rather spectacular effect on the trans-
port properties of this system.

Next we briefly outline how to construct more general
node S matrices based on this solution of the ideal junc-
tion for arbitrary g. The idea is to add impurities of
strength  i in each QW close to the node, xi � �1=kF,
which will modify the bare S matrix; for explicit calcu-
lations, see Ref. [17]. One can then compute the Gij for
this more general case, but still allowing for arbitrary
g < 1, e.g., by using perturbation theory around the above
solution of the ideal junction. Focusing on N � 3 and
just one impurity,  2 �  3 � 0, to lowest order in  1,
a straightforward calculation gives Ii � I0i � �Ii, where
I0i is the current through QW i for  i � 0 discussed
above, and

�I1 �� 2eg�
 2
1

!c
sin��g�� cos��g��

� ��1� 2g���2�I
0
1=e!c�

2g��1; (18)

where g� � 4g=3 and �Ik�1 � ��I1=2. Obviously, this
perturbative estimate breaks down at very small energy
scales for g� < 1 but is valid for all energies at g� > 1. It
is straightforward to perform similar calculations for
more than one impurity, other N, and/or higher orders
in the  i. From Eq. (18) and generalizations, we infer that
Gij � 0 is indeed the only stable fixed point. It is also
clear that for at least one very strong impurity  i, the
system will reduce to one of the special cases considered
previously [4–6]. For g close to 1, we can also make
explicit contact to Ref. [6]. For S matrices close to
Eq. (6) and weak interactions, our solution indeed repro-
duces the results of Ref. [6]. Note that the restriction to
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weak interactions allows one to easily treat more gen-
eral S matrices [6].

To conclude, we have proposed a Landauer-type theory
for strongly interacting electrons in branched quantum
wires such as carbon nanotube Y junctions. A broad class
of S matrices can be covered by formulating a suitable
boundary condition (‘‘density matching’’) to describe an
ideal symmetric junction and on top adding effective
impurities in the individual wires. The only stable fixed
point corresponds to disconnected quantum wires, with
corrections revealing the Luttinger liquid physics via
various power laws.

We thank H. Grabert and A. Komnik for useful
discussions. Support by the DFG under the Gerhard-
Hess program and under Grant No. GR 638/19 is
acknowledged.
[1] S. Datta, Electronic Transport in Mesoscopic Systems
(Cambridge University Press, Cambridge, 1995).

[2] R. Egger and H. Grabert, Phys. Rev. Lett. 77, 538 (1996);
80, 2255(E) (1998); Phys. Rev. B 58, 10 761 (1998).

[3] R. Egger et al., Phys. Rev. Lett. 84, 3682 (2000).
[4] C. Nayak et al., Phys. Rev. B 59, 15 694 (1999).
[5] I. Safi, P. Devillard, and T. Martin, Phys. Rev. Lett. 86,

4628 (2001).
[6] S. Lal, S. Rao, and D. Sen, Phys. Rev. B 66, 165327

(2002).
[7] C. Itzykson and J. M. Drouffe, Statistical Physics

(Cambridge University Press, Cambridge, 1989), Vol. 2.
[8] C. Dekker, Phys. Today 52, No. 5, 22 (1999).
[9] R. Egger and A. O. Gogolin, Phys. Rev. Lett. 79, 5082

(1997); C. Kane, L. Balents, and M. P. A. Fisher, ibid. 79,
5086 (1997).

[10] M. Bockrath et al., Nature (London) 397, 598 (1999);
Z. Yao et al., ibid. 402, 273 (1999); H. Postma et al.,
Science 293, 76 (2001).

[11] W. Z. Li, J. G. Wen, and Z. F. Ren, Appl. Phys. Lett. 79,
1879 (2001).

[12] M. Terrones et al., Phys. Rev. Lett. 89, 075505 (2002).
[13] J. Li, C. Papadopoulos, and J. M. Xu, Nature (London)

402, 253 (1999); C. Papadopoulos et al., Phys. Rev. Lett.
85, 3476 (2000).

[14] M. S. Fuhrer et al., Science 288, 494 (2000); J. Kim et al.,
J. Phys. Soc. Jpn. 70, 1464 (2001); J.W. Janssen et al.,
Phys. Rev. B 65, 115423 (2002).

[15] J. Hasen et al., Nature (London) 390, 54 (1997).
[16] D. S. Petrov, G.V. Shlyapnikov, and J. T. M. Walraven,

Phys. Rev. Lett. 85, 3745 (2000).
[17] S. Ami and C. Joachim, Phys. Rev. B 65, 155419 (2002).
[18] A. N. Andriotis et al., Phys. Rev. B 65, 165416 (2002).
[19] T. Itoh, Phys. Rev. B 52, 1508 (1995).
[20] M. Fabrizio and A. O. Gogolin, Phys. Rev. B 51, 17827

(1995).
[21] J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
226404-4


