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Isotropic-Nematic Transition in Liquid-Crystalline Elastomers
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In liquid-crystalline elastomers, the nematic order parameter and the induced strain vary smoothly
across the isotropic-nematic transition, without the expected first-order discontinuity. To investigate this
smooth variation, we measure the strain as a function of temperature over a range of applied stress, for
elastomers cross-linked in the nematic and isotropic phases, and analyze the results using a variation on
Landau theory. This analysis shows that the smooth variation arises from quenched disorder in the
elastomer, combined with the effects of applied stress and internal stress.
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FIG. 1. Prediction for the strain as a function of temperature

order discontinuity in the order parameter at the transi- in a homogeneous elastomer under an aligning stress �.
Liquid-crystalline elastomers are unusual materials
that combine the elastic properties of rubbers with the
anisotropy of liquid crystals [1,2]. They consist of cross-
linked networks of polymers with mesogenic units.
Because of this structure, any stress on the polymer net-
work influences the orientational order of the liquid crys-
tal, and, conversely, any change in the orientational order
affects the shape of the elastomer. These materials are
being actively studied for both basic research [3–7] and
applications, including use as actuators or artificial
muscles [8]. For this application, a change in temperature
near the isotropic-nematic transition induces a large
change in the orientational order, which causes the elas-
tomer to extend or contract.

In this paper, we investigate the isotropic-nematic tran-
sition in liquid-crystalline elastomers. In conventional
liquid crystals, this is a first-order transition, with a
discontinuity in the magnitude of the orientational order
as a function of temperature. By contrast, experiments on
liquid-crystalline elastomers show that both the orienta-
tional order parameter and the elastomer strain change
smoothly at this transition, with no first-order disconti-
nuity [8–12]. Surprisingly, this is neither a first- nor a
second-order transition, but rather a rapid nonsingular
crossover from the isotropic to the nematic phase. Thus,
the key question is how to explain this difference between
conventional liquid crystals and liquid-crystalline elas-
tomers. That question is important for basic research,
because it shows how orientational ordering is affected
by coupling to a cross-linked polymer network. That
question is also important for applications, because it
shows how to optimize these materials for artificial
muscles, which should have the greatest possible length
change for a fixed temperature change.

There are two possible explanations for a smooth cross-
over from the isotropic to the nematic phase. The first
explanation is based on the effect of an aligning stress on
a first-order transition [13]. The classical theory of phase
transitions predicts the generic behavior shown in Fig. 1.
For a stress below the critical point, a system has a first-
0031-9007=02=89(22)=225701(4)$20.00 
tion. As the stress increases, the discontinuity decreases.
When the stress reaches the critical point, the disconti-
nuity vanishes and the system has an infinite slope in the
order parameter as a function of temperature. Beyond the
critical point, the system evolves smoothly from the dis-
ordered to the ordered phase. In liquid-crystalline elas-
tomers, an aligning stress may come from an applied
stress on the sample. It may also come from an internal
stress due to cross-linking an elastomer in the nematic
phase, which imprints orientational order in the pattern of
cross-links. The combination of applied stress and inter-
nal stress might put an elastomer beyond the critical
point, so that it would show a supercritical evolution
from the isotropic to the nematic phase. If so, one would
optimize elastomers for applications by working close to
the critical point, where the slope is greatest.

An alternative explanation for this behavior is hetero-
geneity in an elastomer. The polymerization and cross-
linking process induces some quenched disorder in a
sample. For example, polydispersity in the chain length
gives one type of disorder. This disorder may lead to a
distribution of regions with different isotropic-nematic
transition temperatures. At any given temperature, a
sample would have a coexistence of isotropic and nematic
domains. As the temperature decreases, it would cross
over from mostly isotropic to mostly nematic phase,
2002 The American Physical Society 225701-1
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FIG. 2. Data for strain as a function of temperature over a
range of applied stress, for elastomers cross-linked in the
nematic and isotropic phases. Strain is measured relative to
an arbitrary zero value. The nematic–cross-linked sample
broke during the 40 kPa heating run.

VOLUME 89, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 25 NOVEMBER 2002
leading to a smooth evolution in the average orientational
order parameter and in the macroscopic strain. In this
case, one would optimize elastomers for applications by
reducing the heterogeneity to get the transition in the
narrowest possible range of temperature.

To determine which explanation is correct, we measure
the strain as a function of temperature over a range of ap-
plied tensile stress. We use elastomer samples cross-
linked in the nematic phase, which should have a large
internal stress imprinted by the cross-linking process,
and samples cross-linked in the isotropic phase, which
should not have an internal stress. The samples are com-
posed of a 50=50 mol% mixture of 40-acryloyloxybutyl
2,5-(40-butyloxybenzoyloxy)benzoate (MAOC4) and 40-
acryloyloxybutyl 2,5-di(40-pentylcyclohexyloyloxy)ben-
zoate (MACC5), with 5 mol% of the 1,6-hexanediol
diacrylate cross-linker. Nematic–cross-linked samples
are simultaneously polymerized and cross-linked in a
cell with rubbed surfaces at 30 �C, and isotropic–cross-
linked samples at 110 �C. Synthesis, preparation, and
characterization of nematic–cross-linked samples are
described in Ref. [8]. At low temperature those samples
have long-range orientational order, with order parameter
S � h32 cos

2�� 1
2i of 0.3, as determined by polarized

FTIR spectroscopy [8].
Under zero applied stress, the samples were seen to

extend and contract as a function of temperature. For
finite applied stress, the thermoelastic curves for strain
vs temperature were obtained in static measurements on a
dynamic mechanical analyzer (TA Instruments DMA
2980) at a heating/cooling rate of 0:5 �C=min. The data
are shown in Fig. 2. The strain is measured relative to an
arbitrary zero value. These plots show a smooth non-
singular isotropic-nematic transition at all values of the
applied stress, and under both cross-linking conditions,
although the transition is sharper at lower applied stress
and under isotropic cross-linking.

To assess whether the data are compatible with the first
proposed explanation, we use Landau theory for a homo-
geneous elastomer. The free energy can be expanded in
terms of the orientational order parameter S and the
strain e relative to the high-temperature relaxed state.
This expansion gives [13]

F � 1
2�

0�T � T0
0�S

2 � 1
3b

0S3 	 1
4c

0S4 � ueS� �e	 1
2e2;

(1)

where T is the temperature and � is the effective stress
acting on the elastomer, which is a combination of the
applied stress and the internal stress due to anisotropic
cross-linking.We average this free energy over S to obtain
the free energy in terms of e alone,

F � 1
2��T � T0�e

2 � 1
3be

3 	 1
4ce

4 � �e: (2)

Minimizing this free energy over e gives
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��T � T0�e� be2 	 ce3 � � � 0: (3)

This equation implicitly determines e as a function of T
and �. In particular, it predicts a critical point at

�c �
b3

27c2
; Tc � T0 	

b2

3c�
: (4)

We attempt to fit the prediction of Eq. (3) to the data
presented above. For computational convenience, we
solve Eq. (3) for the inverse function T�e� and fit it to
temperature as a function of strain. Because this inverse
function depends linearly on the fitting parameters, we
can use linear regression techniques. Since the strain data
are reported relative to an arbitrary zero, we subtract the
high-temperature asymptotic strain from the data to ob-
tain the values of e for the analysis. This procedure fits the
data to the functional form shown in Fig. 1.

Our analysis gives the fits shown by the dashed lines in
Fig. 3. These fits agree well with the data in the high- and
low-temperature limits, but they are unsatisfactory for
intermediate temperatures. In all cases, the fitting func-
tion shows a first-order discontinuity at the isotropic-
nematic transition. Apparently the regression sacrifices
the intermediate regime in order to give good fits at high
and low temperatures. We also fit the data to an extended
model with fifth- and sixth-order terms in the free energy
(not shown), and the fits are also unsatisfactory. These
results show that the data are not consistent with a super-
critical evolution between the isotropic and nematic
225701-2
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FIG. 3. Fits of selected data sets to the models discussed in
the text. Dashed lines: Homogeneous model. Solid lines:
Heterogeneous model. Dot-dashed lines: Distribution of the
transition temperature TNI in the heterogeneous model.
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phases. The high- and low-temperature data do not con-
nect together following the prediction for a supercritical
transition in a homogeneous elastomer.

In addition to the unsatisfactory fits, there are two other
indications that the data are inconsistent with predictions
for a supercritical transition in a homogeneous elastomer.
First, we can use Landau theory to extract the maximum
slope @e=@T at the inflection point in the supercritical
regime � > �c. The result is�

@e
@T

�
max

� �
�

3c2=3��1=3 � �1=3
c �

: (5)

This equation implies that the maximum slope should
decrease inversely with stress �� �c beyond the critical
point. However, the measured slope depends rather
weakly on stress, and it is approximately constant with
respect to stress at low stress. This result suggests that
some mechanism other than supercritical stress is respon-
sible for the observed broadening of the transition.
Second, in this experiment we minimize any symme-
try-breaking influence on the elastomer by cross-linking
one sample in the isotropic phase and reducing the ap-
plied stress to 10 kPa. Even under these conditions, the
experiment shows a smooth crossover between the iso-
tropic and nematic phases. It is unlikely that these con-
ditions could give a supercritical stress on the system; it is
more plausible that another mechanism is involved.

Because of these inconsistencies between the data and
the model for a homogeneous elastomer, we consider a
model for heterogeneity in the elastomer. As a hypothesis,
we suppose that heterogeneity gives regions with different
isotropic-nematic transition temperatures. We consider a
Gaussian distribution of the transition temperature TNI,
and thus of the parameter T0. Hence, the macroscopic
strain is an average over the strain of local regions,

ehetero��; T� �
Z

d�T0�ehomo��; T � T0�P�T0�; (6)

where

P�T0� �
1�������

2�
p

T0;SD

exp

�
�
1

2

�
T0 � T0

T0;SD

�
2
�
: (7)

To compare this heterogeneous prediction with the
data, we take the homogeneous fit discussed above and
convolve it with a Gaussian of adjustable width T0;SD. We
fit the width to the data through a nonlinear least-squares
procedure. The results are shown by the solid lines in
Fig. 3. The convolution does not change the high- or
low-temperature limits of the fits, which were already
satisfactory, but it has a great effect on the intermediate-
temperature behavior. Instead of a discontinuous jump in
the strain at TNI, the fitted curves show a smooth
crossover as the elastomer changes from mostly isotropic
to mostly nematic. The shape of the curve in the
intermediate-temperature regime is approximately an
225701-3
error function of width T0;SD. This behavior agrees with
the trend in the data. As a result, the heterogeneous model
gives good fits over the full range of temperature.

To analyze the fitting results further, we would like to
know how close an elastomer is to the critical point at
� � �c. For that reason, we define the dimensionless
stress ratio �=�c, where � is the apparent stress that
comes from fitting the homogeneous model to the high-
and low-temperature data, and �c � b3=�27c2� is the
critical stress derived from the parameters b and c in
those fits. In Fig. 4(a) we plot the stress ratio for
isotropic– and nematic–cross-linked samples vs applied
stress. From this plot, we can make several observations.
First, the stress ratio increases linearly with applied stress.
This increase is expected, since an applied stress should
shift a sample toward the critical point. At 40 kPa, the
nematic–cross-linked sample nearly reaches the critical
point.When the applied stress goes to zero, the stress ratio
does not go to zero but rather to a finite limit. This
behavior shows that the effective stress acting on a sample
is a combination of the applied stress and an internal
225701-3
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FIG. 4. Analysis of the fitting results for isotropic– and
nematic–cross-linked elastomers over a range of applied stress.
(a) Stress ratio �=�c, indicating how close an elastomer is to
the critical point. (b) Standard deviation T0;SD, indicating the
width of the distribution of transition temperatures.
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stress. For the nematic–cross-linked sample, we expect
an internal stress due to the anisotropy of the cross-
linking, and indeed the internal stress is large, giving a
contribution equivalent to 35 kPa of applied stress. For the
isotropic–cross-linked sample, we do not expect an in-
ternal stress, but Fig. 4(a) implies that some internal stress
is present, equivalent to 16 kPa of applied stress. This
surprising contribution must come from some uninten-
tional anisotropy in the sample preparation, perhaps re-
lated to the boundary conditions on the sample.

Another parameter to extract from the fits is the
Gaussian width T0;SD that is required to fit the isotropic-
nematic crossover in the data. In Fig. 4(b) we plot T0;SD vs
applied stress for isotropic– and nematic–cross-linked
samples. The plot shows that the fitted values of T0;SD
have some scatter, but they are not correlated with applied
stress. This result is reasonable, because the distribution
of transition temperatures should not be related to
applied stress. The average value of T0;SD is approximately
2:25 �C for the isotropic–cross-linked sample and 2:9 �C
for the nematic–cross-linked sample. This corresponds to
a distribution with a full width at half maximum of 5:3 or
6:8 �C in each of the samples, respectively.

As a final point, we note that our model for a distribu-
tion of transition temperatures describes only one way in
which heterogeneity can affect liquid-crystalline elasto-
mers. A second possible mechanism would be a distribu-
tion in the direction of the imprinted orientational order,
225701-4
especially in a sample cross-linked in the nematic phase.
A distribution of transition temperatures is random-bond
disorder, while a distribution of quenched director orien-
tations is random-field disorder. Our study has shown that
the sharpness of the isotropic-nematic transition is con-
trolled by heterogeneity, but it has not addressed the
question of whether random-bond or random-field disor-
der is dominant. Indeed, measurements of the strain vs
temperature may not be enough to make this distinction;
more microscopic studies may be needed. This remains a
question for future research.

In conclusion, we have developed a phenomenological
theory for the isotropic-nematic transition in liquid-
crystalline elastomers. This theory is a variation on
Landau theory, which allows for quenched disorder in
the elastomer through variation in the transition tempera-
ture. We compare this theory with measurements of the
strain vs temperature over a range of applied stress, for
samples cross-linked in the isotropic and nematic phases.
This comparison shows that quenched disorder is a key
limiting factor in the sharpness of the isotropic-nematic
transition, which must be controlled for applications of
liquid-crystalline elastomers.
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