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Molecular Origin of Auxetic Behavior in Tetrahedral Framework Silicates
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Recent analytical models for the Poisson’s ratios (�ij) of tetrahedral frameworks are applied to
�-cristobalite and �-quartz for the first time. Rotation and dilation of the SiO4 tetrahedral subunits are
considered. Each mechanism leads to negative �31 values, whereas negative and positive values are
possible when they act concurrently. The concurrent model is in excellent agreement with experiment
and explains the dichotomy between negative and positive �31 values in �-cristobalite and �-quartz,
respectively. The predicted strain-dependent trends confirm those from molecular modeling.
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FIG. 1. Tetrahedral framework unit cells for �-cristobalite
and �-quartz showing tetrahedral rotation axes (solid arrows)
and geometrical parameters. Filled circles are silicon atoms;
empty circles are oxygen atoms. (a) �-cristobalite –unit-cell
lengths are given by X1 � l�1� cos
� and X3 � 2
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(b) �-quartz–unit-cell lengths are given by X1 �
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p . (c) x3-�110� projection of �-cristobalite, show-
and xj directions, respectively (i; j � 1, 2, or 3 and i � j),
and the s’s are elastic compliance coefficients. Tensile

ing an ‘‘untilted’’ tetrahedron (A) to define the tilt angle 
.
(d) x1-x2 projection of �-cristobalite.
Negative Poisson’s ratio materials undergo lateral ex-
pansion upon longitudinal tensile loading, as well as
lateral contraction under longitudinal compression. There
is increasing interest in the development of these novel
materials, known as auxetic materials [1], due to their
counterintuitive behavior and also in applications where
the auxetic property itself [2,3], or enhancements in other
mechanical properties due to a negative Poisson’s ratio
[2,4], may be exploited. Man-made and natural auxetic
materials and structures exist from the molecular [3,5] to
the micro- [4,6] and macroscopic levels [2,7]. The discov-
ery of auxetic behavior at the molecular level in single-
crystal �-cristobalite [5] has led to more research into
the modeling, design, and development of molecular
auxetics [8–14]. We have recently developed analytical
models in which the deformation of a tetrahedral frame-
work structure, analogous to the molecular framework of
�-cristobalite, is by tetrahedral rotation and dilation [15].
Here we use these models to examine the related �-quartz
structure, and show how they explain the dichotomy
between auxetic and nonauxetic behavior in these two
materials.

The basic molecular ‘‘building block’’ for both
�-cristobalite and �-quartz is the SiO4 tetrahedron con-
sisting of an O atom at each of the four corners surround-
ing a central Si atom. Both structures consist of a
framework of corner-sharing SiO4 tetrahedra in which
each O atom is shared between two adjacent tetrahedra.
�-cristobalite contains four tetrahedra per tetragonal
primitive unit cell (space group P41212) and �-quartz
contains three tetrahedra per trigonal primitive unit cell
(space group P3121); see Figs. 1(a) and 1(b).

The Poisson’s ratio �ij of a material under stress in the
xi direction is defined by

�ij � �
"j
"i

� �
sji
sii

; (1)

where "i and "j are the true strains in the orthogonal xi
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strains are positive and contractile strains are negative.
Hence a material which undergoes lateral expansion due
to longitudinal extension has a negative Poisson’s ratio.
Employing the experimental elastic compliance coeffi-
cients in Eq. (1) for �-cristobalite [5] and �-quartz [16]
reveals that auxetic behavior is observed in �-cristobalite
but not �-quartz when loaded in the x3 direction (Table I).
Cooperative rotation of the SiO4 tetrahedra has been
suggested as the mechanism leading to auxetic behavior
in �-cristobalite [5,8,9].

Assuming regular tetrahedra, the Poisson’s ratios for
both structures can be derived in terms of a tetrahedral
tilt angle (
) and the tetrahedral edge length (l) [Figs. 1(a)
and 1(c)]. The mutually orthogonal principal axes x1, x2,
 2002 The American Physical Society 225503-1



TABLE I. �31 Poisson’s ratios for �-quartz and �-cristobalite.
Expt � experimental [5,16]; CM�ai� � computer modeling
ab initio calculations [8,9]; CM�pp� � computer modeling
pair-potential calculations (method of long waves) [9];
CM�rigid� � computer modeling pair-potential calculations
(rigid SiO4 tetrahedra constraint) [8,9].

�-quartz �-cristobalite

Expt �0:127
 0:001 �0:07
 0:01
RTM �0:62 �0:48
DTM �1:00 �1:00
CTM �0:11 �0:06
CM (ai) �0:1 �0:2
CM (pp) �0:19 �0:05
CM (rigid) �0:6 �0:5
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and x3 and the crystallographic symmetry axes x, y, and z
are also shown in Figs. 1(a) and 1(b) for both polymorphs.

 is defined with respect to an axis passing through the
midpoints of two opposing edges of each tetrahedron. For
�-cristobalite the tilt axes are aligned parallel to the unit-
cell diagonals in the x-y plane [Figs. 1(a), 1(c), and 1(d)];
whereas they are parallel to either of the x or y axes or
parallel to the short unit-cell diagonal in thex-y plane for
� quartz [Fig. 1(b)]. 
 � 0 when the top edge of each
tetrahedron is perpendicular to the z axis [Fig. 1(c)].
Tetrahedral rotation corresponds to a variation in 

[Fig. 2(a)], whereas l varies in tetrahedral dilation
[Fig. 2(b)].
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FIG. 2. Auxetic deformation mechanisms in tetrahedral
frameworks. (a) Tetrahedral rotation about the tilt axis
through the centers of two opposing tetrahedron edges. Fully
expanded (i.e., 
 � 0�) and fully densified (i.e., 
 � 45�) 3�
3� 3 extended tetrahedral networks are shown for the
�-cristobalite structure. (b) Tetrahedral dilation in which tet-
rahedral size varies. 3� 3� 3 extended tetrahedral networks
for the �-cristobalite structure are shown before and after
contraction of the tetrahedra (
 � same value in both cases).
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Analytical expressions for the elastic constants of
network structures deforming by multiple deformation
mechanisms acting simultaneously have been developed
for honeycombs [10] and microporous polymers [17].
Using an analogous approach, the Poisson’s ratios for
�-cristobalite deforming by tetrahedral rotation and di-
lation acting concurrently, which we call the concurrent
tetrahedra model (CTM), can be readily shown [15] to
take the form

�31 � ��1
13 � �

�
cos


1� cos


��
1� cos
� � sin

cos
� � sin


�
; (2)

where � is a ‘‘strength’’ parameter defined by

� � l
d

dl

� l
d

d�

d�
d sec�

d sec�
dR

dR
dl

: (3)

For silica, l � O-O bond length, R � Si-O bond length,
and � � Si-O-Si angle.

Similarly, it can be shown [18] that the equivalent
expression for �-quartz is

�31 � ��1
13 � �

� ���
3

p
cos


1�
���
3

p
cos


�� 1��
3

p � cos
� � sin
�

�cos
� � sin
�
:

(4)

Equations (2) and (4) indicate that if �31 is small, then
�13 will be large (e.g., �13 � 10 if �31 � 0:1). A Poisson’s
ratio with such a large magnitude is outside of the bounds
allowed by classical elasticity theory for isotropic mate-
rials ( � 1 	 � 	 �0:5). However, for anisotropic mate-
rials it has been shown [19] that �ij 	 �Ei=Ej�

1=2 and
�ij�ki�jk < 1=2, where Ei and Ej are the Young’s moduli
along xi and xj, respectively, k � 1, 2, or 3 and k � i � j.
Hence, very large Poisson’s ratios are allowed for aniso-
tropic materials.Very large negative and positive Poisson’s
ratios are predicted in periodic cellular solid microstruc-
tures [10,17] and ‘‘giant’’ Poisson’s ratios have also been
predicted in vacuumlike colloidal crystals [20].Very large
negative Poisson’s ratios (of the order of �12) have been
observed experimentally in highly anisotropic micropo-
rous polymers [6]. Hence, while they may be unusual,
large Poisson’s ratios are not unphysical in anisotropic
materials such as the tetrahedral framework geometries
considered here.

The expressions for the rotating tetrahedra model
(RTM), in which deformation is assumed to be due to
the cooperative rotation of rigid tetrahedra (dl � 0), are
derived by substituting � � 1 in Eqs. (2) and (4).
Similarly, substituting � � 0 into Eqs. (2) and (4) yields
the expressions for the dilating tetrahedra model (DTM)
in which tetrahedral size variation for constant shape
occurs at fixed tetrahedral orientation (d
 � 0).

For both structures increasing 
 leads to a decrease in
the unit-cell lengths [Fig. 2(a)], whereas increasing l
leads to an increase in the unit-cell lengths [Fig. 2(b)].
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Hence both mechanisms act to expand (or contract) the
structure for negative values of � (d
 and dl of opposite
sign). Positive values of � (d
 and dl of equal sign) cor-
respond to one of the mechanisms expanding the struc-
ture whereas the other contracts the structure. In this case
an overall positive Poisson’s ratio is possible [15].

In considering the values of � to be employed in the
CTM for the �-cristobalite and �-quartz polymorphs of
crystalline silica it is instructive to use the expanded
form of � given in Eq. (3). dR=dl ��

���
3

p
=�2

���
2

p
��,

d�=d sec� �� cos2�= sin��, and d
=d� are purely geo-
metrical. Both polymorphs contain tetrahedra of similar
size (l� 2:63 �A) and have similar intertetrahedral angles
and distances (�� 144:4 and 146:4� for �-quartz [21]
and �-cristobalite [22], respectively; Si. . .Si� 3:06 �A
[23,24]). Hence, to a first approximation we expect the
inter- and intratetrahedral forces to yield similar values
of d sec�=dR (the amount of intertetrahedral angle
change relative to tetrahedral size change) and, therefore,
similar l�d sec�=dR��dR=dl� values for both polymorphs
if the CTM is valid. Expressions relating 
 to � have been
derived elsewhere for �-quartz [25] and �-cristobalite
[26]. From these expressions, it can be shown for the
�-quartz structure that

d

d�

d�
d sec�

� �
f34 � �cos
� �2

���
3

p
��1�2g2

2�cos
� �2
���
3

p
��1� sin


; (5)

and for the �-cristobalite structure that

d

d�

d�
d sec�

� �
�1� 2 cos
� 2 cos2
�2

6�1� 2 cos
� sin

: (6)

Hence from Eqs. (3), (5), and (6), and the above assump-
tion that l�d sec�=dR��dR=dl� is similar for both poly-
morphs, the ratio of the strength parameters for �-quartz
and �-cristobalite are dependent only on the respective
values of 
:

�q

�c
�

f34 � �cos
q � �2
���
3

p
��1�2g2

�cos
q � �2
���
3

p
��1� sin
q

�
3�1� 2 cos
c� sin
c

�1� 2 cos
c � 2 cos2
c�
2 ; (7)

where the subscripts q and c refer to �-quartz and
�-cristobalite, respectively. Equation (7) yields �q=�c �
0:9995 when the experimental tilt angles for �-quartz [25]
and �-cristobalite [23] of 
q � 16:3� and 
c � 23:5�,
respectively, are employed. Hence we expect, from simple
geometrical considerations, the CTM strength parameters
for �-quartz and �-cristobalite to be equal in magnitude
and sign if the model is valid.

Molecular orbital calculations for �-quartz imply l
increases as � decreases (
 increases) [25] and there is
experimental evidence for such a relationship between the
mean Si-O length ( / l) and � in both polymorphs (e.g.,
225503-3
Ref. [23]). This, then, corresponds to a positive value of �
in the CTM.

Substituting the experimental values of �31

(Refs. [5,16]) and 
 (Refs. [23,25]) into Eqs. (2) and (4)
yields � � �5:24
 0:10 and � � �5:13
 0:10 for
�-cristobalite and �-quartz, respectively. The two values
of � thus obtained for �-quartz and �-cristobalite are,
therefore, equal in magnitude (within error) and positive,
as proposed above if the CTM is valid for these materials.

The �31 values calculated from all three analytical
models for �-cristobalite and �-quartz are compared with
experimental and computer modeling data in Table I.
The analytical model calculations employed the experi-
mental values of 
 � 16:3� and 23:5� for �-quartz and
�-cristobalite, respectively. The CTM values for both
polymorphs were calculated using the average value of
� � �5:18 from the fit to the experimental data.

The RTM �31 calculations are in excellent agreement
with computer modeling predictions, based on classical
interatomic potentials, in which the SiO4 tetrahedra were
constrained to remain rigid during deformation of both
structures. Hence the role of rigid tetrahedral rotation as
an auxetic deformation mechanism in tetrahedral frame-
work silicates is confirmed. However, comparison of the
experimental �31 data with the RTM calculations yields
poor agreement and so tetrahedral rotation alone cannot
explain the deformation of these polymorphs when
loaded along x3.

The DTM calculations show that an alternative mecha-
nism for auxetic behavior exists for these structures,
although poor agreement is achieved with the experimen-
tal and computer modeling data.

For both polymorphs the CTM �31 values are in
excellent agreement with experiment and represent an
improvement on computer modeling calculations
based on classical interatomic potentials and on fully
quantum-mechanical ab initio pseudopotentials [8,9].
Single-crystal �-quartz and �-cristobalite are, therefore,
examples of two molecular materials for which the
model of concurrent tetrahedral rotation and dilation is
valid for loading in the x3 direction.

The variation of �31 with loading strain is shown in
Fig. 3 for both polymorphs. These calculations use the
expanded form of d
=dl given in Eq. (3) to relate the
change in tetrahedron edge length to the change in tilt
angle at any value of 
, and assume d sec�=dR remains
constant during deformation (which is reasonable from
previous structural investigations [24,25]) at the value
( � �3:445 �A�1) corresponding to � � �5:18 in the un-
deformed state. The CTM predicts �31 will become posi-
tive under uniaxial compression and increasingly
negative under tensile loading for �-cristobalite. For
�-quartz �31 is predicted to become increasingly positive
under compression but is also predicted to be negative
under sufficient tensile loading. These trends are in agree-
ment with computer modeling calculations [8,9]. �31 has
225503-3
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FIG. 3. �31 versus loading strain "3 for �-quartz (dashed
curve) and �-cristobalite (solid curve) calculated from the
CTM. "3 was calculated from "3 � ln�X3=X3�0�� where X3

and X3�0� are the deformed and undeformed unit-cell lengths
along x3 obtained by substituting the deformed and initial
values, respectively, of l and 
 in the expressions for
�-quartz and �-cristobalite given in the caption to Fig. 1. l
and 
 were calculated using Eq. (3) and the assumptions out-
lined in the text.
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also been predicted from pair-potential calculations to be
negative for �-quartz under reduced hydrostatic pressure
and is known to be negative at elevated temperatures
(800–850 K) [27].

In conclusion, we have shown that both concurrent
tetrahedral rotation and dilation are needed to explain
both the positive and negative Poisson’s ratios observed in
�-quartz and �-cristobalite, respectively, when loaded in
the x3 direction. �-cristobalite exhibits auxetic function-
ality as a result of two independent auxetic mechanisms
acting concurrently. �-quartz, on the other hand, provides
clear evidence that two auxetic deformation mechanisms
can lead to nonauxetic behavior when one (RTM) acts to
expand the structure and the other (DTM) acts to contract
it. The remarkable accuracy with which the values of the
real materials are predicted by a model having only a few
degrees of freedom indicates that tetrahedral distortion is
not a significant deformation mechanism for loading
along the x3 direction. This may be attributable to the
orientation of the tetrahedra with respect to this specific
loading direction in these two polymorphs. On the other
hand, tetrahedral distortion is known to occur in these
polymorphs when subjected to thermal or hydrostatic
pressure loading, and it can be shown [18] that the
CTM is not a valid model for deformation under these
loading conditions.

The strain-dependent variations in �31 are also consis-
tent with the trends predicted from computer modeling
calculations. Having clearly identified the origin for
auxetic behavior in tetrahedral framework structures we
are now applying and extending the models to the germa-
nia analogs [18], and also using the general methodology
225503-4
and alternative modeling techniques in the drive to de-
sign and discover other molecular auxetic materials [12].
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