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Anchoring Screening of Defects Interaction in a Nematic Liquid Crystal
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The relaxation dynamic of a dipole of +1/2 and —1/2 parallel disclination lines in a confined
geometry is measured. The confinement and the planar anchoring conditions force the disclinations to
be normal to the glass plates. In a first asymptotic regime, the direct elastic interaction between
disclination is completely screened out by the anchoring energy. In a second regime, corresponding to
the final annihilation steps, the dynamic follows the square-root law predicted by de Gennes for two
isolated and parallel disclinations. The annihilation dynamic, in the asymptotic regime, is in good
agreement with an elastic model based on an electrostatic analogy.
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Defects in nematic liquid crystal are topological ob-
jects related to a discontinuity of the director field n(r),
where n(r) is the average orientation of the elongated
molecules composing the nematic medium. The topologi-
cal properties of these defects have been broadly studied
[1]. For isolated line defects (disclinations), the static
(i.e., elastic energy and the force between disclinations)
and dynamical properties are also well understood [2—-4].
In real systems, disclinations are never isolated, being
subjected to the anchoring forces coming from the sub-
strates of the cell containing the liquid crystal. As a
consequence, in a confined geometry, the substrate an-
choring is expected to strongly influence the interactions
between defect lines. A similar anchoring effect has been
recently invoked to explain the annihilation dynamic of
nematic point defects confined in capillary tubes [5] and
in hybrid cells [6,7]. However, the behavior of defect lines
in a confined geometry remains totally unexplored.

The study of topological defects is a highly interdisci-
plinar field in physics. The dynamics and the interaction
of topological defects plays an important role in the
understanding of defects mediated phase transitions, dis-
sipation process in superfluid and superconductor, etc.,
Moreover, a confined geometry has dramatic effects on
defects interaction as has been recently recognized in the
case of vortex lines in extremely anisotropic layered
superconductors [8,9], and in vortices trapped in super-
fluid Fermi gases [10].

The nematic liquid crystals are a convenient system
to study the confinement effects on defects interac-
tions. First, the disclinations appear spontaneously at the
isotropic-nematic transition when the O(3) symmetry of
the isotropic phase is broken to the D,,, symmetry of the
nematic phase. Second, nematic defects are macroscopic
objects which can be simply studied with an optical
polarizing microscope. Third, a highly confined system
can be easily obtained by approaching the solid substrates
limiting the nematic.
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In this Letter, we study the relaxation dynamic of a
dipole of +1/2 and —1/2 disclination lines in a confined
geometry. Because of the confinement and to the planar
anchoring conditions the disclinations are normal to the
glass plates. We measure two different dynamic regimes
depending on the distance u between the defect lines.
When u > &, where &, is a characteristic length, the
direct elastic interaction between disclination is com-
pletely screened out by the anchoring energy. The elastic
force in this asymptotic regime has been calculated from
an analogy with the electrostatic. In the second regime,
corresponding to u < &, the annihilation dynamic fol-
lows the square-root law predicted by de Gennes [11] for
two isolated and parallel disclinations.

In the experimental setup, the nematic liquid crystal
5CB (pentylcyanobiphenyl) is sandwiched between a pla-
nar glass plate and a convex spherical lens of bending
radius R = 52 cm. The lens is mounted on a holder pro-
vided of three screws-springs systems to adjust the lens-
plate distance up to 100 wm. All measurements have been
done in the thinner cell region » = 0 where the thickness
gradient is negligible. A 300 A SiO layer is evaporated at
60° incident angle on the substrates to give a planar
homogeneous anchoring. The easy axes on the two sub-
strates are parallel, resulting in a uniform director ori-
entation across the cell. The sample is placed in an oven
(INSTEC STC200D) kept at AT = 0.2 °C below the ne-
matic clearing temperature. Under a polarizing micro-
scope, the ordinary-extraordinary ray interference results
in concentric rings due to the light optical path difference
8(r) = And(r) [An is the liquid crystal birefringence and
d(r) is the cell thickness]. d(r = 0) can be adjusted with
1 pm steps by measuring the interference fringe order in
white and in monochromatic light. A short pulse of hot
air is injected into the oven to heat the liquid crystal in
the isotropic phase. Shortly after the pulse, the sample
temperature decreases to the oven temperature and the
nematic phase is restored. The time 7 necessary to the
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sample for reaching the equilibrium temperature in the
nematic phase has been measured by monitoring the
interference rings shift induced by the quench. We found
7 = 1 sin agreement with a thermal diffusion time across
the glass plates 7, = h*>/D = 1.5s (h = 1 mm is the
glass plate thickness and D = 0.6 X 10°% m?/s is the
glass thermal diffusion coefficient). The experiment is
filmed with a CCD camera connected to a PC. This
system is able to store 33 image/s on the PC.

The transition from the high symmetry isotropic phase
[O(3)] to the lower symmetry nematic phase (D) gen-
erates topological line defects (disclinations). Figure 1
shows typical disclinations under crossed polarizers for a
cell thickness d = 13 pum. Each defect has two extinction
branches characteristic of a *1/2 disclination. To pre-
serve the null topological charge of the uniformly ori-
ented nematic cell, the disclinations appear in
(—=1/2)-(+1/2) pairs. The confinement and the planar
anchoring condition force the wedge disclinations to be
orthogonal to the substrates. Consequently, the director
field lies in planes parallel to the substrate. The elastic
distortion is confined in the region between the two dis-
clinations. We call ¢ the director angle with the y axis in
Fig. 1. The ¢ field is mapped by turning the polarizers
with respect to the cell. Far from the disclinations, n is
uniformly oriented along the anchoring easy axis ¢ =
¢o = 0. By approaching the defect dipole along the y
axis (y > 0) the director orientation moves toward the x
axis parallel to the line connecting the defects. By cross-
ing the x axis, n jumps from ¢ = 7/2t0 ¢ = —/2 due
to the defects topological charge. Finally, moving off
from the dipole, the director recovers an orientation
parallel to the anchoring easy axis direction. From an
elastic point of view, this director distortion is equivalent
to a continuous 7 wall. The distance £(¢) along the y axis
between the extinction branches is a typical wall distor-
tion length. During the defects annihilation, when the
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FIG. 1. +1/2 and —1/2 parallel disclination pair with the
associated director texture. Disclination annihilation: (a) t =
1.5s;(b)t=1.75s; (c) t=1.78s;and (d) t = 1.82 s.

0

S

225501-2

two disclinations are far apart, as in Figs. 1(a) and 1(b),
&(t) = &y = 5 um, independent from the distance be-
tween defects u. At the opposite, when u(r) < &, [see
Figs. 1(c) and 1(d)], the extinction branches assume a
circular form corresponding to &(¢) = u(r). These two
different regimes are also found in the disclination anni-
hilation dynamic in Fig. 2. The time origin is kept at 37 =
3s after the quench in the nematic phase guaranteeing a
stable sample temperature during the dipole annihilation.
For u > &, the disclinations relax with a constant speed,
while, for u < &, the distance between defects follows a
square-root time law.

In the asymptotic regime (1« > &), the annihilation
driving force is Fy = —d Foy./du, where F.,. is the free
elastic energy excess in the wall between the two defects.
By using the axis definition shown in Fig. 1, we define
normalized coordinates y =+/K,/K7y" and z=7%7,
where K, and K are, respectively, the twist and splay-
bend elastic constants and ¢ is a characteristic length
given in (5) . The normalized force Fy = 2F|//K,K
writes as

Fy= f[(?f)z—i-(fg)z}dydz + L{;fsinzd)sdy, H

where ¢ is the surface director angle with the y axis and
L is the anchoring extrapolation length. The first term in
(1) is the bulk elastic energy; the second represents the
Rapini-Papoular anchoring energy. By assuming a sym-
metrical cell with identical substrates, ¢(y,z) can be
found by minimizing the functional F (1) in only half
of the cell. The minimization gives

?¢ | 9?
_(f + _(zb =0, 2)
dy 7
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FIG. 2. Dipole annihilation dynamic. e are experimental
points. The full line is the best fit with function (12). The
dashed line is the extrapolation with a constant speed v,y .
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with boundary conditions
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¢(y,z) obey to the Laplace equation with Neumann
boundary conditions. To solve (2) and (3), we use the
conformal transformation technique already developed
in electrostatic. The detailed calculations will be reported
elsewhere. The equilibrium distortion ¢(y,z) in the wall
is equivalent to a distortion associated with two virtual
twist disclinations parallel to substrates, as in Fig. 3. Each
virtual disclination is at a distance z,= arctan(L/{)
from the substrate where ¢ is found from the implicit

equation
€[1 —Earctan<L—7T>}=d. %)
T 4

The equilibrium director angle across the wall ¢(y,z) is
given by

2sinhysinz
Y ) 6)

1

¢0:2) Zarcmn<sinh2y —sin?z
In the case of weak anchoring € = m+/(Ld)/2>>d and
&(y,7), (6) is found independent from z. In this limit,
the bulk twist elastic torque overcomes the anchoring
energy torque. As a consequence, the surface director
moves toward the bulk director orientation to minimize
the twist elastic energy. The distortion along the wall is a
pure splay-bend distortion without twist. In the opposite
limit of strong anchoring (L < d), £ = d, and the anchor-
ing torque is sufficiently strong to support a bulk twist
distortion.

FT-T TS TS T T TS T T T T T T T T AT T

-1/2

FIG. 3. Virtual disclinations placed at a distance z, =
(€/ ) arctan(L7r/€) from the substrate.
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The driving force F) is obtained by integrating Eq. (1)
with the equilibrium director angle ¢(y,z) given by
Eq. (6):

L 1] ¢
Fy= 2,/KK{§ — arctan(%)-ﬁ- fo ;arctan(m t)dt}.
(N
The first two terms in (7) come from the anchoring
energy, whereas the last term represents the bulk elastic
energy. We limit here to discuss the strong anchoring

conditions L < d. In this limit the leading terms in F
write as

T T d

Fo- 2 Tt In( )] o
where C = [{ arctan(x)/xdx = 0.916 is the Catalan num-
ber. The direct elastic interaction between defects gives
an elastic force F, = (wKd)/(2u) [11]. The total elastic
force Fy acting on one disclination may be written in an
approximate way by adding the two asymptotic forces Fj,
and F,. We obtain Fy = Fy(1 + £./u), where &, =
(7Kd)/(2F,). In the asymptotic regime u > &, the di-
rect elastic interaction between defects is completely
screened out by the anchoring. At the opposite, when
the defects are closer than £,., we recover the elastic
interaction of two anchoring-free disclinations. There-
fore £, represents the radius of a cylinder around each
defect where the elastic torque associated to the defects
dominates the anchoring torque.

The defects dissipate energy during their motion. The
energy dissipation is confined in the cylinder of radius &,
around the defects where the director changes rapidly in
time. By neglecting the disclination core dissipation, the
associated viscous force F, on each defect writes as [4]

F, =2y dv ln<3.6 € ) 9)
4 a

In (9), a is the disclination core radius, v is the defect
velocity, s is an effective viscosity which takes into
account backflow effects. Following [3], we can estimate
Yeit = ¥1 — a3/[2(n, — y,)], where 7y, is the orienta-
tional viscosity and «,, 1;, v, are related to the Leslie
coefficients. ., in principle, has to be determined by
solving the full equation of nematodynamic, therefore
the above estimation of vy has to be considered correct
to 20%.

The relative equation of motion of the two disclinations

results in

du &

—=- 1+22) 10

dt vasy( U ) ( )
where

8F
Vgyy = 0 (an
Y dmyer In()

is the initial annihilation speed after the quench in the
nematic phase. Equation (10) has an implicit solution:
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FIG. 4. v, versus d. Dashed curves correspond to a plot

with function (13) with A =70s"!
respectively.

and A=110s"1,

utée ) (12)
Uy + fc

uq in (12) is the initial distance between disclinations. The
full line in Fig. 2 is the best fit of the experimental data
with two free parameters v, and £.. We found &, =
&o = 3.9 um. The size £, of the region where the energy
is dissipated is much larger than the core disclination
radius supporting the assumption of a negligible core
dissipation in (9). L may be deduced from the &£, and
Uysy best fit values. £, depends on the exact form of the
total force in the region where the F, and F, are of the
same order which is not well known. As a consequence,
the L determination from £, is less accurate than from
Uy~ Using (11), from the best fit value v,,, = 29 um/s
and the 5CB material parameters, K = 2.4 X 10" 12N,
K, =1072N [12], a =100 A, vy = 1.8cp [13], we
found L = 0.2 um. The anchoring extrapolation length
is in agreement with the measured values for planar SiO
anchoring [14]. To test our model in a closer way, we
measure v, versus d (see Fig. 4). From (8) and (11), v,

18 written as
A d
~=—|1+1Inl— || 13
Uy d[ n(ﬂ)} (13)

where A = 8/KK,/[ Ve In(3.6£./a)] = 90 £20s™ L.
The two dotted lines in Fig. 4 represent the plot of the
function (13) with the two extrema A values A = 70 s~!
and A = 110 s™!, respectively. From Fig. 4, one can see
that experimental data support our anchoring screening
model of disclinations interaction.

We summarize by stressing that a more stringent com-
parison with the theory requires a closer examination of
the viscous force acting on the defects. In particular, the
backflow effects, which have been taken into account in
our model as the average of pure splay and bend viscosi-

Uyl = g —u — &, ln(
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ties, has to be calculated in a more detailed way starting
from the full hydrodynamic equation for the two-
dimensional flow around the defect. A second contribu-
tion to the viscous force may come from the surface static
friction induced by the SiO surface roughness. This con-
tribution is negligible in our case of strong driving force
(strong anchoring) but it may become important in the
weak elastic force limit (weak anchoring).

Very recently Toth er al. [15] showed (through a nu-
merical calculation) that the annihilation velocity for two
parallel and isolated line defects depends on the topo-
logical charge of the defects. Our system, implemented
with memory free surfaces having completely degenerate
azimuthal anchoring and strong zenithal anchoring, is
well suitable to an experimental test of their theoretical
previsions.

In conclusion, we have studied the anchoring influence
on the annihilation dynamic of two parallel +1/2, —1/2
disclination lines in a nematic liquid crystal. When the
defect lines are far from each other, the direct elastic
interaction is completely screened out by the anchoring
energy. From the annihilation dynamic measurements, by
using an elastic model based on an electrostatic analogy,
we are able to find the anchoring strength.

We acknowledge fruitful discussions with S. Faetti.
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