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Bursts of Coherent Synchrotron Radiation in Electron Storage Rings: A Dynamical Model
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Evidence of coherent synchrotron radiation has been reported recently at the electron storage rings of
several light source facilities. The main features of the observations are (i) a radiation wavelength short
compared to the nominal bunch length, and (ii) a coherent signal showing recurrent bursts of duration
much shorter than the radiation damping time, but with spacing equal to a substantial fraction of the
damping time. We present a model of beam longitudinal dynamics that reproduces these features.
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radiation spectrum, and the time structure of the signal
characterized by short recurrent bursts separated by a

We now give details of the model, which is based on the
standard picture of one-dimensional longitudinal motion
A bunched beam of high energy electrons passing
through a bending magnet emits incoherent synchrotron
radiation over a wide spectrum of frequencies with power
proportional to the number of particles N. In addition,
coherent emission delivering radiation power propor-
tional to N2 may occur at wavelength � if the Fourier
spectrum of the longitudinal bunch distribution is signifi-
cant at that �. This condition is necessary but, as was
recognized long ago, not sufficient: the vacuum chamber
gives an exponential suppression of radiation at wave-
lengths � greater than a ‘‘shielding cutoff ’’ �0 �
2h�h=R�1=2, where h is the chamber size and R is the
bending radius [1–3]. In electron storage rings the equi-
librium bunch distribution at moderate currents is
smooth, being a slightly distorted Gaussian, and typically
has large rms length compared to �0 � �0=2�. This fact
suggests negligible Fourier components of the charge
density at wavelengths less than �0 and hence complete
shielding of coherent radiation by the chamber. On the
other hand, at high current there can be collective insta-
bilities that result in small-scale density fluctuations
within a bunch, and corresponding Fourier components
below the cutoff. Such instabilities appear to be respon-
sible for coherent radiation seen recently at several stor-
age rings [4–8]. Incidentally, evidence of microstructures
was already present in the first clear observation of coher-
ent synchrotron radiation (CSR), from highly non-
Gaussian bunches produced by a linac [9].

The cause of the instability may be in ‘‘geometric’’
wake fields from the vacuum chamber, as suggested in
[6,7], or the collective force from CSR itself (with wake
and precursor components) [8,10,11], or some combina-
tion of the two. The exact cause may depend on the
particular machine and how it is set up, but the CSR
component is always present, with more or less effect of
shielding depending on circumstances. Here we propose a
model in which the only collective force is from CSR. It
succeeds in accounting for principal aspects of the ob-
servations: the existence of a current threshold for detec-
tion of CSR, the wavelength at the peak of the coherent
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substantial fraction of the damping time. The success of
our model is encouraging and promises useful applica-
tions. For instance, the model should aid in the design of a
devoted source of steady CSR [12], after a modification to
account for nonlinear terms in the momentum compac-
tion. Pursuit of such a design is encouraged by reports of
steady CSR at BESSY, in a configuration with a short
bunch achieved by reduced momentum compaction [13].
We also hope that the methods and results presented here
will be helpful in analyzing a number of other advanced
accelerator or light source projects, which often involve
harmful coherent radiation from short, intense bunches
with very low emittance [14].

The results of a numerical evaluation of the model
can be described as follows. At time zero there are
microstructures in the bunch of very small amplitude,
giving small Fourier components with wavelength below
the shielding cutoff. Above a current threshold these
Fourier components build up exponentially because the
impedance for synchrotron radiation is very large below
cutoff. There is a corresponding burst of radiation, but it is
limited in duration by a quick smoothing of the phase-
space distribution. Continued exponential growth is pre-
vented by the intrinsic nonlinearity of self-consistent
many-particle dynamics, which also contributes to phase-
space smoothing through quick generation of a relatively
large spectrum of Fourier modes. Within one or two
synchrotron periods the microstructures have almost dis-
appeared, the overall bunch length has increased, and the
burst of coherent radiation is finished. Next, radiation
damping and diffusion from the usual incoherent radia-
tion gradually reduce the bunch length and energy spread,
restoring the conditions for instability and another burst,
after a time somewhat smaller than the damping time. A
plot of computed bunch length shows fast oscillations
typical of a quadrupole mode, while the envelope of those
oscillations shows a ‘‘sawtooth’’ or ‘‘relaxation’’ pattern
similar to that observed in several storage rings [5,15,16],
not necessarily in the context of CSR. The radiation bursts
occur near the points of minimum envelope amplitude.
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under linear rf focusing, with radiation damping and
quantum fluctuations from incoherent emission of pho-
tons [17]. To this we add a ‘‘self-consistent’’ account of
the nonlinear interplay of CSR and particle dynamics,
based on the Vlasov-Fokker-Planck (VFP) equation for
the phase-space distribution.

We assume that � � 1=�2 and � � 1, where � is the
momentum compaction factor and � the Lorentz factor,
but this restriction is easily relaxed. We choose dimen-
sionless phase-space variables, q � z=�z and p � ��E=
�E, where z is the distance from the test particle to the
synchronous particle (positive when the test particle
leads), and �E � E� E0 is the deviation of energy
from the design energy. Normalization is by the low-
current rms bunch length and energy spread, which are
related by the equation !s�z=c � ��E=E0, where !s is
the angular synchrotron frequency. In these coordinates
the unperturbed equations of motion are dq=d� � p,
dp=d� � �q, with time variable � � !st.

The VFP equation for the phase-space distribution
function f�q; p; �� is
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where �IcF�q;f;�� is the collective force due to CSR, in
principle the longitudinal electric field obtained from
Maxwell’s equations with charge/current densities de-
rived from f itself. The nonlinear Vlasov operator on
the left side accounts for the complicated short term
dynamics, while the Fokker-Planck operator on the right
side accounts for long-term effects of incoherent radia-
tion: damping, and diffusion due to quantum fluctuations.
The longitudinal damping time is td. We normalize F so
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that the current parameter is Ic � e2N=�!sT0�E�, where
N is the bunch population and T0 is the revolution time.

Since it is difficult to solve the Maxwell equations with
a realistic representation of particle orbits and vacuum
chamber walls, we compute the collective force as though
it came from a simple model which is meant to express
the essential features. The vacuum chamber is represented
by infinite parallel plates, perfectly conducting, with
vertical separation h. The particles move on circular
orbits of fixed radius R. In cylindrical coordinates
�r; �; y�, with the y axis normal to the plates and the origin
in the midplane, the charge density has the form
��r; �; y; t� � eN����!0t; t�H�y� �r� R�=R, where
!0 � !0c=R is the revolution frequency of the circular
model (not of the actual ring). The vertical densityH�y� is
fixed; we choose H to be constant for jyj<  h=2, and 0
otherwise. The longitudinal density in the beam frame
evolves by VFP dynamics through the relation ���; t� �
�R=�z�

R
f�R�=�z; p;!st�dp.

The radius R is identified as the radius of curvature in
the bending magnets, not the average geometrical radius,
of the actual ring. Thus, we effectively neglect transient
effects as the particles enter and leave bends, hoping that
at least the total work done by the CSR force over a turn
will be approximated by the model. The plate separation
is taken to be the average height of the actual vacuum
chamber in the bends. The parameters entering the un-
perturbed equations of motion will be those of the actual
ring. Only the CSR force is computed as though the
trajectory were circular.

We define E��; t� �
R
E���; R; y; t�H�y�dy to be the

longitudinal electric field averaged over the transverse
distribution. The double Fourier transform (FT) of the
field is ÊE�n;!� � �2���2

R
d�

R
dt exp��in�� i!t� �

E��; t�, which is related to the corresponding FT of the
current I through the impedance: �2�RÊE�n;!� �
Z�n;!�ÎI�n;!�. The impedance is given by [3]
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Here H�1� � J � iY , where J and Y are Bessel func-
n n n n n
tions of the first and second kinds, respectively, and �p �
�p=h, �2

p � �!=c�2 � �2
p, �p � 2�sinx=x�2, with x �

�p h=2. In mks units Z0 � 120� �. The sum over posi-
tive odd integers p arises from a Fourier expansion with
respect to y.

We suppose that during the ith time step ti ! ti �  t in
integration of (1) the bunch can be considered as rigid.
Next, we assume that during that time step the CSR force
can be computed as though the bunch had its present
form for all time. In that case we get the field from the
source ÎI�n;!� � eN!0�n�ti� �!� n!0�, where �n�ti� �
�1=2��

R
d� exp��in�����; ti�. Then only the ‘‘diagonal’’

part of the impedance, Z�n� � Z�n; n!0�, enters the pic-
ture. The inverse FT gives the collective force for (1)
through F�q; f��i�� � �!0

P
n exp�inq�z=R�Z�n��n�ti�.
The real part of Z�n�=n has a peak value of about
132h=R � and is negligible for n < n0 � ��R=h�3=2.
Figure 1 shows the real and imaginary parts of Z�n�=n
for a choice of parameters meant to model the NSLS VUV
Storage Ring.

A more exact treatment of bunch deformation in
the impedance picture, accounting strictly for causality
and retardation, involves off-diagonal contributions of
Z�n;!�. This matter will be discussed elsewhere [18],
as will our procedure for fast evaluation of the FT defin-
ing �n�ti�.

As a way to test Eq. (1) against experimental data we
will refer to a typical setting of the Brookhaven NSLS
VUV Storage Ring [6,7]. The list of relevant parame-
ters includes R � 1:9 m and h � 4:2 cm; synchrotron
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FIG. 2. Bunch length vs time, Ic � 12:5 pC=V.
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FIG. 3. Coherent over incoherent power, Ic � 12:53 C=V.
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FIG. 1. Real (solid line) and imaginary (dashed line) parts of
Z�n�=n in ohms. Parallel-plate model with h � 4:2 cm, R �
1:9 m, and E0 � 737 MeV.
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frequency !s=2� � 12 kHz; revolution frequency
1=T0 � 5:9 MHz; damping time td � 10 ms; energy
E0 � 737 MeV. We set the nominal rms bunch length
and relative energy spread to �z � 5 cm and �E=E0 �
5 � 10�4. For beam height  h, not a critical parameter,
we take 0.1 mm.

Before looking for numerical solutions, useful insight
into the condition for instability can be gained by study-
ing theVlasov part of Eq. (1) upon linearization about the
equilibrium distribution / e�p

2=2. Under the assumption
that the instability be sufficiently fast we neglect the term
linear in q responsible for rf focusing. The resulting
equation is that of a coasting beam and admits wave solu-
tions with space-time dependence exp�i�nq�z=R� *��	
yielding the dispersion relation �Ic!0R2=

�������
2�

p
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2
erfc��iz� is the error function

of a complex argument. Analysis of the dispersion rela-
tion shows the existence of unstable solutions (Im* > 0)
for Ic > Ithc � 6:2 pC=V, corresponding to a single-bunch
circulating current of 168 mA or N � 1:8 � 1011. Close
to threshold the wavelength of the most unstable mode is
� � 2�R=n � 6:8 mm with n � 1764. These values are
reasonably close to the observed wavelength � � 7 mm
and critical current 100 mA for detection of a coherent
signal [6]. The linear theory also indicates that the insta-
bility is very fast: the exponential growth time of the
most unstable mode is as low as one-tenth of the synchro-
tron period even for a current only 5% above threshold.
The essence of this linear analysis is the same as in [11]
with the difference that there the radiation impedance is
relative to free space; thus the result is meaningful only
when the calculated unstable wavelength is below the
shielding cutoff. Previously, a linearized Vlasov study
including rf focusing and shielding had given a CSR-
induced instability, at a feasible current in a model of a
compact storage ring [10].

For the nonlinear calculation we solve Eq. (1) as a time-
domain initial-value problem, using a refinement of the
method of [16] as explained in [18]. The solution f is
represented by its values on a Cartesian grid in �q; p�
space with polynomial interpolation to off-grid points.
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Our typical grid is 800 � 800, extending to jqj �
jpj � 6, and the typical time step is  � � !s t � 0:002.

In a first nonlinear calculation to test the linear theory
we include rf but no Fokker-Planck terms. We find a
threshold of instability that agrees with the linear theory
to a few percent. The discrepancy appears to be due to
bunching alone.

For the run including the Fokker-Planck terms that
we discuss in the following we choose a current parame-
ter Ic � 12:5 pC=V, about twice the threshold of insta-
bility, and start integration of (1) with a Gaussian
f�q; p; 0� � �1=2�� exp���q2 � p2�=2	, slightly per-
turbed to accelerate the onset of instability. We could
as well start with no perturbation of the Gaussian,
and integrate for a longer time to get similar results.
The Gaussian is essentially the Haı̈ssinski equilibrium
[16] for this system, and it is highly unstable under time
evolution. Figure 2 shows the normalized rms bunch
length �q versus time, and Fig. 3 the corresponding
coherent radiated power (divided by the incoherent
power) in a narrow band of wavelengths between � �
0:62 and 0:74 cm. Coherent and incoherent power
are calculated, respectively, as Pcoh

n �t� � 2�eN!0�
2 �

ReZ�n�j�n�t�j
2 and Pincoh

n � 2N�e!0�
2ReZ�n�=�2��2.

The dark band of Fig. 2 is the envelope of rapid oscil-
lations of quadrupole type, with frequency near 2!s. The
envelope grows immediately by about 70% as a result of
the fast instability, and there is an attendant initial burst
of radiation. Let us ignore transients and concentrate on
the second and later bursts, which follow a more regular
pattern setting in at about 60 synchrotron periods, one-
half the damping time. The second burst is emitted while
224802-3
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FIG. 4. Bunch density with ‘‘microbunching,’’ Ic �
12:5 pC=V.
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a ripple (microbunching) develops on top of the charge
density profile. The amplitude of the ripple reaches a
maximum over a time of about one synchrotron period,
and this saturation of growth is followed by a smoothing
of the whole phase-space distribution over a similar time
interval. Figure 4 shows the charge density close to the
peak of the CSR burst. In the Fourier spectrum of the
bunch, the process of growth-saturation-smoothing starts
with exponential growth of a narrow band of modes. It
is followed by a quick broadening of the spectrum of
excited modes and then damping of their amplitude as
bunch length and rms energy spread undergo a rapid
increase.

Over a longer time interval, about one-sixth of the
damping time td for the present choice of current, the
effects of radiation damping and diffusion appear.
The conditions for microbunching are reestablished as
the bunch becomes increasingly smooth and shorter. The
pattern then recurs, but with a stochastic aspect rather
than precise periodicity. The radiation bursts occur at the
times of minimum bunch length envelope (at the notches
of the sawtooth in Fig. 2), which are near the times of
exponential growth of density fluctuations. The spikes in
Fig. 3 closely resemble the measurements reported in
[4–7]. In accord with observations, we find increased
burst spacing with decrease of the current; e.g., a 30%
reduction to Ic � 9 pC=V increases the spacing by about
25%. The time-averaged spectrum of the coherent radia-
tion is reported in Fig. 5. The peak of the spectrum occurs
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FIG. 5. Time-averaged CSR power spectrum, Ic �
12:5 pC=V.
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at wavelength � � 0:78 cm, slightly larger than the value
predicted by linear theory but still close to observations
[6]. The spectrum peak value expressed as the ratio of
coherent to incoherent radiation power is about 9:1 � 104.
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