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It has long been recognized that kinetic friction F, between two solids must be due to instabilities,
sudden “pops” of certain degrees of freedom. Here, such pops are studied with a focus on boundary
lubrication. The pops’ characteristics and consequently the friction-velocity relationship depend
qualitatively on dimensionality, commensurability, and details of the lubricant wall interaction. It is
found that F; should be small between commensurate surfaces. F, is large for incommensurate surfaces,
unless the lubricant’s motion is confined to 1D. The effects of thermal noise are discussed and computer
simulations are employed to show the relevance of the predictions to less idealized models.
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When a solid slider is moved laterally with respect to a
substrate, the kinetic friction F is usually almost inde-
pendent of the sliding velocity v, [1] with leading cor-
rections in the order of Inv, [2]. This so-called Coulomb
friction differs from drag or Stokes friction that states a
linear relation F, = yv,. Linear friction can be under-
stood from equilibrium statistical mechanics. The pro-
portionality coefficient y can be calculated with the
fluctuation dissipation theorem [3]. Linear or drag friction
arises from the many collisions between the central de-
gree of freedom, for instance a Brownian particle or a
phonon, and other degrees of freedom like solvent par-
ticles or other phonons.

It has long been recognized that Coulomb friction
must be related to instabilities that occur on a microscopic
scale [4]. When a slider is moved laterally with respect
to the substrate, fast motion (pops) of certain degrees
of freedom become unavoidable even if the slider’s center
of mass velocity v, is extremely small. The microscopic
peak velocities in such pops are rather independent of
vy and consequently the energy dissipated via a Stokes-
type mechanism also becomes almost independent
of vy. The prototypical instability leading to Coulomb
friction was suggested by Prandtl and Tomlinson [5].
In their one-dimensional (1D) model, a surface atom
in the slider is coupled to its ideal lattice site with a spring
of stiffness k which moves at constant velocity uvy.
Interactions with the rigid substrate are modeled
with a potential energy V periodic in the substrate’s
lattice constant plus some drag force linear in the atom’s
velocity x. If k is sufficiently small, pops become un-
avoidable and if thermal fluctuations are negligible, F
remains finite in the limit of zero v,. More complex
models such as elastic manifolds sliding through ordered
and disordered media [6,7] show similar behavior. At
small v, the functional dependence for F(v,) is com-
monly found to be

Fi(vg) = Fi(0) + cvf, (1)
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where (8 is a nonuniversal exponent between zero and
unity.

While the elastic instabilities considered in those
models are important in various contexts, this does not
seem to be the case for the atomistic explanation of solid
friction: Many detailed calculations reveal that in most
cases, interbulk interactions are too weak to lead to
instabilities at the atomic scale. If interbulk interactions
are very strong, irreversible processes like plastic defor-
mation, material mixing, cold welding, etc. become
unavoidable and prevent the instabilities from being
elastic [8].

It has been suggested that the presence of adsorbed
particles, i.e., a boundary lubricant, confined between
two surfaces is a more likely explanation for the com-
monly observed presence of solid friction [9]: Molecules
that are only weakly bound to either surface can accom-
modate the surface corrugation of both walls simulta-
neously. This locks the walls together. The argument
explains static friction, which is the minimum force to
initiate sliding between two solids. However, for kinetic
friction, the motion of atoms is relevant. It has become
common practice in the context of elastic manifolds [6] to
first neglect thermal fluctuations. The resulting athermal
motion of the particles, which is intimately linked to the
motion of the mechanically stable equilibrium sites, is the
key to predict the final dissipation. A similar analysis
shall be done here for boundary lubricants, which are first
treated in the impurity limit, where interactions between
lubricant atoms can be neglected. Such an analysis is not
known to the author, although the present model has
already been used extensively to predict successfully
various tribological phenomena [10,11].

The equation of motion for a lubricant atom in the
impurity regime reads

1
i=—ypx — vy, (& —vy) + Er(t)

1
— L9y, (0 + Ve — v} )
mox
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where x denotes the atom’s position, m is the atom’s mass,
v, and vy, parametrize the damping forces from the top
and the bottom wall, and V, and V;, denote the interaction
of the confined atom with the slider and the substrate. I'(7)
is a Langevin-type stochastic random force defining tem-
perature. For the lubricant wall interactions, various
choices will be considered. Centrosymmetric potentials
can all be written in the form:

Vip = Vt(%) cos(x/b; ;) + Vt(,lb) cos(2x/b;,) + -+, (3)

where 27b, and 27b, are the periods of the top and the
bottom wall, respectively. The relevant physical units are
defined through the choice Vt(o) =1,m=1,b,=1, and
Boltzmann’s constant kz = 1. Furthermore, we will only
consider slightly underdamped dynamics (y, = 1) and
restrict ourselves to the symmetric choice of Vy 1= V.
The free parameters are thus the degree of lattice mis-
match (b, — b,,), the value of the first higher harmonic
(for simplicity, we use V, := Vill,)), and temperature 7.
We start the discussion of the athermal, commensurate
(com.) system (b, = b;) without higher harmonics for
which the net time-dependent potential is simply given
by V(1) = 2V, cos(vyt/2b) cos[(x — vyt/2)/b]. Thus, for
times cos(vyt/2b) # 0, the atoms move at velocity v,/2
as shown in Fig. 1. An infinitely small moment after the
equality cos(v/2b) = 0 holds, an atom will not be able to
find a mechanically stable position in the immediate
vicinity of the previous stable position and the atoms
should skid towards a new mechanical equilibrium. In
order for this to happen, one needs a symmetry breaking
element such as thermal fluctuations, y, # y,, b, # by, or
round-off errors in numerical calculations, otherwise the
atom’s velocity simply is vy/2. In order to induct the
instability, we chose to set y, = 0, because thermal fluc-
tuations would result in the trivial F;, « v, relation at
small v, and round-off errors would produce meaning-
less, machine-dependent results. We note that the precise
choice of y, and vy, is not relevant for the functional form
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FIG. 1. Mechanical equilibrium positions for adsorbed atoms

between two commensurate solid surfaces as a function of the
relative displacement Ax,,; between the walls. The grey lines
indicate the solutions of Eqs. (2) and (3) if the walls are in slow
relative sliding motion. (a) First higher harmonic V; <O.
b))V, =0.()V,>0.
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of Fi(v,) for incommensurate (inc.) surfaces. This is why
v, = 0 is chosen in the following.

Owing to broken symmetry (v, = 0), the atom can
now slide to the next minimum indicated by the gray
lines in Fig. 1(b). However, the peak velocities X, in this
process tend to zero as v, decreases, because, due to the
symmetry of V, and V,,, atoms jump between equivalent
positions. Since no lower bound for the dissipated energy
can be given, the zero velocity F; must be zero. At the
same time, the ratio x,/v, diverges for vy — 0, which
can be concluded from Figs. 1(a) and 1(b), so that F;, must
vanish more slowly than with vy. As a result F « vg
with 0 < B <1 is obtained.

The nature of instabilities changes qualitatively when
the first higher harmonic differs from zero. Hence, in the
sense of Morse theory [12], which contains Landau’s
theory of phase transition as a special case, the com.
system without higher harmonics can be considered a
multicritical point. If V; < 0, the motion of mechanically
stable sites x,,(f) becomes continuous as shown in Fig. 1,
however, i ,(f)/v, diverges at some moments of time. If
V, > 0, x,,(#) is discontinuous and the pops take place
between inequivalent positions as shown in Fig. 1(c). In
analogy to phase transitions, pops for which V; > 0 shall
be called first-order instabilities, those for V; = 0 con-
tinuous instabilities. Only first-order instabilities can lead
to finite energy dissipation and thus to finite F; when v,
approaches zero. A numerical analysis shows that in
all three cases Fi(vy) can be described with Eq. (1) at
small vy. The results are shown in Fig. 2: The more
discontinuous the motion of mechanically stable sites
Xms(?), the larger Fy. Within numerical accuracy, the ex-
ponent 3 (as determined at sufficiently small v,) seems to
depend only on the sign of V; but not on its precise value
provided | V; | is not too large. B is difficult to determine
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FIG. 2. Kinetic friction force F; as a function of sliding
velocity v, for commensurate walls with different first higher
harmonics. Straight lines are fits to low v, data according to
Eq. (1). The two data sets with V; < 0 are fitted with the same
exponent 3 = (.83.

224301-2



VOLUME 89, NUMBER 22

PHYSICAL REVIEW LETTERS

25 NOVEMBER 2002

accurately due to nonanalytical corrections of order v/
with 8, > B.

For 1D, inc. surfaces, the basic picture is similar. If V,
is larger than a (positive) critical value V7, whose precise
value depends on the lattice mismatch, then pops between
inequivalent positions are present and F;, remains finite as
v, tends to zero. For V| < V7, however, the time deriva-
tive of the mechanically stable solution x(f) remains
finite at all times. The atoms are dragged with the wall
that exerts the maximum lateral force. Hence the micro-
scopic (peak) velocities v, scale linearly with v, which
implies Stokes-type friction in that regime (1D, inc.). The
exponent 8 depends again only on the sign of V|, — V. It
is also independent of the precise choice of the damping
coefficient 7.

We now discuss the effect of dimensionality. As one
goes from 1D to 2D com. surfaces, the behavior does not
change qualitatively, because the interference of V, and
V, remains similar. However, there is a fundamental
difference between 1D and 2D inc. surfaces. In 2D inc.
interfaces, first-order instabilities will occur even without
higher harmonics, because in 2D, atoms can circumnavi-
gate the points of maximum longitudinal force. This
induces finite F. This trend remains rather stable beyond
the impurity limit and also for more complex lubricant
molecules as will be discussed in a separate paper [13].
Our conclusions also provide an explanation of results by
He and Robbins. They studied kinetic friction due to
boundary lubricants with molecular dynamics and found
small F; and large F, between 2D com. surfaces, while no
such gap was seen for inc. systems [14]. Experimentally,
signs for the effects of increased static friction F be-
tween com. surfaces in the presence of a lubricant were
also reported [15], however, smooth-sliding kinetic fric-
tion should show the opposite trend.

This has potentially measurable implications for the
transition from stick-slip motion to smooth sliding. Two-
dimensional com. surfaces should show a characteristic
drop at this transition, as friction is dominated by F in
the stick-slip regime, whereas F; is relevant in the
smooth-sliding regime. No such drop should happen be-
tween 2D inc. surfaces. To support this prediction, we
have extended previous simulations [16] that are based on
the same model as that used in Ref. [9]. A schematic of
the simulation is shown in Fig. 3 together with the average
friction, as defined by the energy dissipated per slid
distance. The experimental verification of these results
requires smooth surfaces, because rough surfaces auto-
matically lead to inhomogeneous energy landscapes [17].
The data shown in Fig. 3 were produced at a normal
pressure of 0.4 GPa and a velocity of about 1 m/s using
the same conversion of units as in Ref. [9]. Note that the
inertia of the slider, which is small compared to experi-
mental values, is responsible for the large velocity at
which the transition between the two sliding regimes
occurs.
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FIG. 3. Kinetic friction force F; divided by load L as a

function of spring constant k for com. and inc. walls lubricated
by a quarter layer. A schematic of the simulation is shown
as well.

We will now turn to the discussion of thermal fluctua-
tions. He and Robbins found that velocity dependent
corrections in a 2D, lubricated, inc. interface satisfy [14]

Fi(vg) = Fi(vyer) + Oln(v/vyer)] €Y}

over several orders of magnitude in v,. This is different
from the behavior found in the Prandtl-Tomlinson model,
for which rigorous treatments yield corrections of the
order (T'1nv)?? in agreement with atomic force micro-
scope experiments of nanoscale single-asperity contacts
[18]. Hence the Prandtl-Tomlinson model does not ex-
plain the usually observed Inv corrections in a straight-
forward manner.

Here it will be shown that simple logarithmic correc-
tions are obeyed even in the impurity limit. Moreover, the
crossover to linear response at extremely small sliding
velocities will be included in the discussion. Figure 4
shows the normalized friction force obtained at thermal
energy T = 0.07 for the com. V; >0 model. Three
regimes can be identified. At very small velocities, fric-
tion is linear in vy and one may associate this regime
with the creep regime. At intermediate vy, Eq. (4) is
rather well satisfied. At “large” velocities, thermal fluc-
tuations become less relevant and the motion is close to
that of the athermal system. The data obtained at different
temperatures can be collapsed on a single master curve
using time-temperature superposition principles. This
requires a dimensionless scaling function s(7) and
in addition at large temperatures a correction function
r(T) close to unity. This latter correction factor,
which will be discussed in more detail elsewhere [13],
must become necessary at large 7 when the thermal
equilibrium velocity distribution overlaps with the
distribution generated through pops. The collapse
is done via Fi(v,T)= r(T*)F,(v*,T")/r(T) with
s(T) In[v*(T*)/v,] = s(T*) In[v(T)/v,] where v, is a
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FIG. 4. Scaling plot of kinetic friction F}(v) normalized by
athermal zero-velocity limit F; = Fi(v = 0, T = 0). The refer-
ence temperature in this plot is 7 = 0.07. In the regime of
thermal equilibrium a linear law Fj(v) « v is drawn to guide
the eye. The critical v# contribution is subtracted from all data.

constant. For s(T) we find s(T) = k,T/AE so that AE can
be interpreted as an effective (free) energy barrier. r(T) is
set to wunity, except at the largest temperature,
for which r(T) = 1.2 gave the best fit to our data.
Qualitatively similar crossover from the linear response
regime to the activated regime occurs in many other
systems such as single particles in a static periodic po-
tential [19], driven thermal elastic manifolds [20], and
shear-thinning fluids [21].

In conclusion, this Letter provides a classification
scheme for instabilities that can occur when two solids
are in relative sliding motion. First-order instabilities are
defined as pops of atoms (or other degrees of freedom)
between inequivalent positions. They lead to kinetic fric-
tion that remains finite when the sliding velocity v, goes
to zero provided the system is athermal. The exponent B8
of the velocity corrections v# depends on the details of
the model, however, 8 only changes its value at certain
critical points in the parameter space defining interac-
tions and geometry. Continuous instabilities are defined
as pops between equivalent positions. They lead to a sub-
linear power law F) « vA. If, however, the positions of
mechanically stable sites move at finite velocities at all
times, simple Stokes friction follows. Also dimensional-
ity plays a crucial role. It is predicted that kinetic friction
would be Stokes like, if it was possible to confine lubri-
cant particles such as Octamethylcyclotetrasiloxane
(OMCTYS) into trenches of (sub)nanometer depth and
width.

While the present study is primarily concerned with
dilute boundary lubricants and will presumably break
down if several lubricant layers support the load, the
concept itself seems to be rather general. For instance
Xme can be a collective order parameter that fluctuates
back and forth between two values. Such quasiperiodic
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phase transitions have been reported in computer simu-
lations of Ni asperities moving over a Cu substrate [22].
Of course, the situation in those simulations was more
complex, because wear was produced as a side effect of
the motion. In the other extreme, x,qy may merely denote
the position of an electronic orbital.
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