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Generalized Partial Dynamical Symmetry in Nuclei
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We introduce the notion of a generalized partial dynamical-symmetry for which part of the
eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example
of Hamiltonians with a partial dynamical O�6� symmetry in the framework of the interacting boson
model. The resulting spectrum and electromagnetic transitions are compared with empirical data
in 162Dy.
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symmetry-dictated structure are fulfilled exactly, but by
only a subset of states. An example in the framework of

The following type of IBM-1 Hamiltonian has been
proposed [10] as a representative of a PDS of the second
The concept of dynamical symmetry has been widely
used in diverse areas of physics with notable examples in
nuclear, molecular, and hadronic physics [1–3]. In this
approach one assumes that the Hamiltonian can be writ-
ten in terms of the Casimir operators of a chain of nested
algebras

G1 � G2 � � � � � Gn; (1)

in which case it has the following properties: (i) solvabil-
ity: all states are solvable and analytic expressions are
available for energies and other observables; (ii) quantum
numbers: all states are classified by quantum numbers
which are the labels of irreducible representations (irreps)
of the algebras in the chain; (iii) predetermined struc-
ture: the structure of wave functions is completely
dictated by symmetry and is independent of the
Hamiltonian’s parameters. The merits of a dynamical
symmetry are self-evident. However, in most applications
to realistic systems, the predictions of an exact dynamical
symmetry are rarely fulfilled and one is compelled to
break it. This is usually done by including in the
Hamiltonian symmetry-breaking terms associated with
different subalgebra chains of the parent spectrum gen-
erating algebra (G1). In general, under such circum-
stances, solvability is lost, there are no remaining
nontrivial conserved quantum numbers, and all eigen-
states are expected to be mixed. A partial dynamical
symmetry (PDS) corresponds to a particular symmetry
breaking for which some (but not all) of the above
mentioned virtues of a dynamical symmetry are retained.
Such intermediate-symmetry structures were recently
shown to be relevant for nuclear [4–10] and molecular
[11] spectroscopy, as well as to the study of mixed sys-
tems with coexisting regularity and chaos [12].

Two types of PDS were encountered so far. The first
type corresponds to a situation for which part of the
states preserve all the dynamical symmetry. In this case
the properties of solvability, good quantum numbers, and
0031-9007=02=89(22)=222501(4)$20.00 
the interacting boson model (IBM-1) [1] is the chain
U�6� � SU�3� � O�3�, applicable to axially deformed
nuclei, where a non-SU (3)-scalar Hamiltonian has
been constructed and shown to have a subset of solvable
states with good SU (3) symmetry while other states are
mixed [4,5].

The second type of PDS corresponds to a situation for
which all the states preserve part of the dynamical sym-
metry. In this second case there are no analytic solutions,
yet selected quantum numbers (of the conserved symme-
tries) are retained. This occurs, for example, when the
Hamiltonian contains interaction terms from two differ-
ent chains with a common symmetry subalgebra, e.g., the
U�5� � O�5� and O�6� � O�5� chains in the IBM-1 [9].
Alternatively, this type of PDS occurs when the
Hamiltonian preserves only some of the symmetries Gi
in the chain (1) and only their irreps are unmixed. Such a
scenario was recently considered in [10] in relation to the
chain

U�6� � O�6� � O�5� � O�3�
�N� h0; �; 0i ��; 0� L

: (2)

An IBM-1 Hamiltonian was constructed which preserves
the U�6�, O�6�, and O�3� symmetries (with quantum
numbers N;�; L) but not the O�5� symmetry (and hence
leads to � admixtures). To obtain this type of PDS in the
IBM-1, it is necessary to include higher-order (three-
body) terms in the Hamiltonian.

The purpose of the present work is to show that it is
possible to combine both types of PDS, namely, to con-
struct a Hamiltonian for which part of the states have
part of the dynamical symmetry. We refer to such a
structure as a generalized partial dynamical symmetry.
For the chain (2) this can be achieved with an IBM-1
Hamiltonian with only two-body interactions. We ana-
lyze the resulting band structure and multiphonon admix-
tures, and compare the spectrum and E2 rates with
empirical data in 162Dy.
2002 The American Physical Society 222501-1
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FIG. 1. Experimental spectra (EXP) of 162Dy [13,14] com-
pared with calculated spectra of H1 � �1L � L, Eq. (3), and
H2 � �2L � L, Eq. (4), with parameters (in keV) �0 	 8, �2 	
1:364, �1 	 8, and h0 	 28:5, h2 	 6:3, �2 	 13:45, and boson
number N 	 15.
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kind

H1 	 �0P
y
0P0 � �2��

�2� ���2���2� ���2�: (3)

The �0 term is the O�6� pairing term defined in terms of
monopole (s) and quadrupole (d) bosons, Py

0 	 dy � dy 
�sy�2. It is diagonal in the dynamical-symmetry basis
j�N�; �; �; Li of Eq. (2) with eigenvalues �0�N  ���N �
�� 4�. The �2 term is constructed only from the O�6�
generator, ��2� 	 dys� sy~dd, which is not a generator of
O�5�. Therefore, it cannot connect states in different O�6�
irreps but can induce O�5� mixing subject to �� 	
�1;�3. Consequently, all eigenstates of H1 have
good O�6� quantum number � but do not possess O�5�
symmetry �.

To consider a generalized O�6� PDS, we introduce the
following IBM-1 Hamiltonian:

H2 	 h0P
y
0P0 � h2P

y
2 �

~PP2: (4)

The h0 term is identical to the �0 term of Eq. (3), and the
h2 term is defined in terms of the boson pair Py

2;� 	���
2

p
sydy� �

���
7

p
�dydy��2�� with ~PP2;� 	 ���P2;�. The

multipole form of H2 is

H2 	 h0�ĈCO�6� � N̂N�N̂N � 4�� � h2 2ĈCO�5�  h2ĈCO�3�

� h2 2n̂nd�N̂N  2� � h2
������
14

p
��2� � �dy~dd ��2�;

(5)

where N̂N and n̂nd are the total and d-boson number
operators, and ĈCG denotes the quadratic Casimir operator
of G 	 O�6�; O�5�; O�3� with eigenvalues ���� 4�,
���� 3�, and L�L� 1�, respectively. The first three terms
in Eq. (5) are diagonal in the dynamical-symmetry basis
of Eq. (2). The n̂nd�N̂N  2� term is a scalar under O�5� but
can connect states differing by �� 	 0;�2. The last
term in Eq. (5) induces both O�6� and O�5� mixing subject
to �� 	 0;�2 and �� 	 �1;�3. Although H2 is not an
O�6� scalar, it has an exactly solvable ground band with
222501-2
good O�6� symmetry. This arises from the fact that the
O�6� intrinsic state for the ground band

jc; Ni 	 �N!�1=2�byc �Nj0i; byc 	 �dy0 � sy�=
���
2

p
;

(6)

has � 	 N and is an exact zero-energy eigenstate of H2.
Since H2 is rotational invariant, states of good angular
momentum L projected from jc; Ni are also zero-energy
eigenstates ofH2 with good O�6� symmetry, and form the
ground band of H2. These projected states do not have
good O�5� symmetry and their known wave functions
contain a mixture of components with different �. For
example, the expansions of the ground state L 	 0�K	01
and first excited state (L 	 2�K	01

) of H2 in the O�6� basis
j�N�; �; �; Li have the form
j0�K	01
i 	 N

X

n

anj �N�; N; 3n; 0 i; j2�K	01
i 	 N 0

X

n

fbnj �N�; N; 3n� 1; 2 i � cnj �N�; N; 3n� 2; 2 ig: (7)
Here N and N 0 are normalization coefficients and
the amplitudes an; bn; cn �n 	 0; 1; . . .� are given by

an 	 �1�n
��������������������������������������������������������������������������
�2n� 1�=��N  3n�!�N � 3n� 3�!�

p
, bn 	

�1�n
���������������������������������������������������������������������������������
�n� 1�=��N  3n 1�!�N � 3n� 4�!�

p
, and cn 	

�1�n�1
���������������������������������������������������������������������������������
�n� 1�=��N  3n 2�!�N � 3n� 5�!�

p
. It fol-

lows that H2 has a subset of solvable states with good
O�6� symmetry (� 	 N), which is not preserved by other
states. All eigenstates ofH2 break the O�5� symmetry but
preserve the O�3� symmetry. These are precisely the
required features of a generalized PDS as defined above
for the chain of Eq. (2).

In Fig. 1 we show the experimental spectrum of 162Dy
and compare with the calculated spectra of H1 and H2.
The spectra display rotational bands of an axially
deformed nucleus, in particular, a ground band �K 	 01�
and excited K 	 21 and K 	 02 bands. An L2 term is
added to both Hamiltonians, which contributes to the
rotational splitting but has no effect on wave functions.
The parameters are chosen to reproduce the excitation
energies of the 2�K	01

, 2�K	21
, and 0�K	02

levels. The O�6�
decomposition of selected bands is shown in Fig. 2. For
H2, the solvable K 	 01 ground band has � 	 N and
exhibits an exact L�L� 1� splitting. The K 	 21 band is
almost pure with only 0:15% admixture of � 	 N  2
into the dominant � 	 N component. The K 	 02 band
has components with � 	 N (85.50%), � 	 N  2
(14.45%), and � 	 N  4 (0.05%). These are the admix-
tures for the K 	 21 and K 	 02 bandheads; they do not
222501-2



0 3 6 9 12 15
0

10

20

30

40

50

P
ro

b
ab

ili
ty

 (
%

)

0

10

20

30

40

50

P
ro

b
ab

ili
ty

 (
%

)

1 2 4 5 7 8 10 11 13 14  τ

L=01 L=21

L=01 L=21

H1

H2

H1

H2

FIG. 3. O�5� decomposition of wave functions of the L 	 0; 2
states in the ground band (K 	 01) of H1 (upper portion) and
H2 (lower portion). All states have � 	 N.
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FIG. 2. O�6� decomposition of wave functions of states in the
bands K 	 01; 21; 02; �L 	 K��, and K 	 23; �L 	 3��, for
H1 (upper portion) and H2 (lower portion).
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vary much throughout the bands as long as the spin is not
too high. Higher bands exhibit stronger mixing, e.g., the
L 	 3� member of the K 	 23 band shown in Fig. 2, has
components with � 	 N (50.36%), � 	 N  2 �49:25%�,
� 	 N  4 �0:38%�, and � 	 N  6 �0:01%�. The O�6�
mixing in excited bands of H2 depends critically on the
ratio h2=h0 in Eq. (4) or equivalently on the ratio of the
K 	 02 and K 	 21 bandhead energies. In contrast, all
bands of H1 are pure with respect to O�6�. Specifically,
the K 	 01; 21; 23 bands shown in Fig. 2 have � 	 N and
the K 	 02 band has � 	 N  2. (Note that, alterna-
tively, for a different ratio �0=�2, the K 	 02 band also
can have � 	 N character as in [10].) In this case the
diagonal �0 term in Eq. (3) simply shifts each band as a
whole in accord with its � assignment. All eigenstates of
both H1 and H2 are mixed with respect to O�5�. This is
demonstrated in Fig. 3 for the L 	 0; 2 members of the
respective ground bands. The observed �� 	 �1;�3
mixing is generated by the �2 term in H1 (3), and
by the ��2� � �dy~dd��2� term in H2 (5), which are both
�3; 0� tensors with respect to O�5�. The combined re-
sults of Figs. 2 and 3 constitute a direct proof that H2

possesses a generalized O�6� PDS which is distinct from
the PDS of H1.

To gain more insight into the underlying band structure
ofH2 we perform a band-mixing calculation by taking its
matrix elements between large-N intrinsic states. The
latter are obtained in the usual way by replacing a con-
densate boson in jc; Ni (6) with orthogonal bosons by� 	
�dy0  sy�=

���
2

p
and dy�2 representing � and � excitations,

respectively. By construction, the intrinsic state for the
ground band of H2, jK 	 01i 	 jc; Ni, is decoupled. For
the lowest excited bands we find
222501-3
jK 	 02 i 	 A� j�i � A�2 j�2
K	0 i � A�2 j�2 i;

jK 	 21 i 	 A� j� i � A�� j�� i:
(8)

Using the parameters of H2 relevant to 162Dy (see Fig. 1),
we obtain that theK 	 02 band is composed of 36:29%�,
63:68% �2

K	0, and 0:03% �2 modes, i.e., it is dominantly
a double-gamma phonon excitation with significant
single-� phonon admixture. The K 	 21 band is
composed of 99.85% � and 0.15% �� modes, i.e., it
is an almost pure single-gamma phonon band. An
O�6� decomposition of the intrinsic states in Eq. (8) shows
that the K 	 02 intrinsic state has components with
� 	 N �86:72%�, � 	 N  2 �13:26%�, and � 	
N  4 �0:02%�. The K 	 21 intrinsic state has
� 	 N �99:88%� and � 	 N  2 �0:12%�. These esti-
mates are in good agreement with the exact results men-
tioned above in relation to Fig. 2.

In Table I we compare the presently known experimen-
tal B�E2� values for transitions in 162Dy with the values
predicted by H1 and H2 using the E2 operator

T�2� 	 eB���2� � � �dy~dd ��2� �: (9)

Absolute B�E2� values are known for transitions within
theK 	 01 ground band [13]. The experimental values for
the K 	 21 ! K 	 01 transitions are deduced from mea-
sured branching ratios together with the assumption of
equal intrinsic quadrupole moments of the two bands
[15,16]. The latter assumption is satisfied by the calcu-
lated E2 rates to within about 10%. The parameters eB and
� in Eq. (9) are fixed for each Hamiltonian from the
empirical 2�K	01

! 0�K	01
and 2�K	21

! 0�K	01
E2 rates.

The B�E2� values predicted by H1 and H2 for K 	 01 !
K 	 01 and K 	 21 ! K 	 01 transitions are very simi-
lar and agree well with the measured values. On the other
222501-3



TABLE I. Calculated and observed [13,15] B�E2� values (in e2b2) for 162Dy. The E2 parameters in Eq. (9) are eB 	 0:138 �0:127�
eb and � 	 0:235 �0:557� for H1 �H2�.

Transition H1 H2 Expt. Transition H1 H2 Expt.

2�K	01
! 0�K	01

1.07 1.07 1.07 (2) 2�K	21
! 0�K	01

0.024 0.024 0.024 (1)
4�K	01

! 2�K	01
1.51 1.52 1.51 (6) 2�K	21

! 2�K	01
0.038 0.040 0.042 (2)

6�K	01
! 4�K	01 1.63 1.65 1.57 (9) 2�K	21

! 4�K	01 0.0024 0.0026 0.0030 (2)
8�K	01

! 6�K	01 1.66 1.68 1.82 (9) 3�K	21
! 2�K	01 0.042 0.043

10�K	01
! 8�K	01 1.64 1.67 1.83 (12) 3�K	21

! 4�K	01 0.022 0.023
12�K	01

! 10�K	01 1.59 1.63 1.68 (21) 4�K	21
! 2�K	01 0.0121 0.0114 0.0091 (5)

4�K	21
! 4�K	01

0.045 0.047 0.044 (3)
0�K	02

! 2�K	01
0.0016 0.0023 4�K	21

! 6�K	01
0.0059 0.0061 0.0063 (4)

0�K	02
! 2�K	21

0.0014 0.1723 5�K	21
! 4�K	01

0.034 0.033 0.033 (2)
2�K	02

! 0�K	01
0.0002 0.0004 5�K	21

! 6�K	01
0.029 0.031 0.040 (2)

2�K	02
! 2�K	01 0.0004 0.0005 6�K	21

! 4�K	01 0.0084 0.0072 0.0063 (4)
2�K	02

! 2�K	21 0.0003 0.0369 6�K	21
! 6�K	01 0.045 0.047 0.050 (4)
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hand, their predictions for interband transitions from the
K 	 02 band are very different. For H1, the K 	 02 !
K 	 01 and K 	 02 ! K 	 21 transitions are compa-
rable and weaker than K 	 21 ! K 	 01. This can be
understood if we recall the O�6� assignments for the
bands of H1 [K 	 01; 21: � 	 N; K 	 02: � 	 N  2]
and the E2 selection rules of ��2� ��� 	 0� and
�dy~dd ��2� ��� 	 0;�2�, which imply that in this case
only the �dy~dd ��2� term contributes to interband transitions
from the K 	 02 band. In contrast, for H2, K 	 02 !
K 	 21 and K 	 21 ! K 	 01 transitions are compa-
rable and stronger than K 	 02 ! K 	 01. This behavior
is a consequence of the underlying band structure
discussed above, and the fact that hK 	 02 j�

�2�
0 jK 	

01i 	 0, while both terms in Eq. (9) contribute to
�K 	 2 interband E2 intrinsic matrix elements.
Recently, the B�E2� ratios R1 	 �B�E2; 0�K	02

!
2�K	21

��=�B�E2; 0�K	02
! 2�K	01

�� 	 10�5� and R2 	

�B�E2; 2�K	02
! 4�K	01

� �= �B�E2; 2�K	02
! 0�K	01

� � 	

65�28� have been measured [14]. The corresponding pre-
dictions are R1 	 0:90, R2 	 3:76 forH1 and R1 	 75:09,
R2 	 3:77 for H2, and are at variance with the observa-
tions. However, as noted in [14], the empirical value of R2

deviates ‘‘beyond reasonable expectations’’ from the
Alaga rules value R2 	 2:57. A measurement of absolute
B�E2� values for these transitions is highly desirable to
clarify the origin of these discrepancies.

To summarize, we have introduced the concept of a
generalized partial dynamical symmetry. An illustration
was given for the interacting boson model by introducing
Hamiltonians that are not invariant under O�6� but have a
subset of solvable eigenstates with good O�6� symmetry,
while other states are mixed. None of the states conserves
the O�5� symmetry. This novel intermediate-symmetry
structure has features relevant to axially deformed nuclei
whose �K 	 2 interband transitions from the K 	 21; 02
222501-4
bands are stronger than �K 	 0 interband transitions
from the K 	 02 band to the ground band.
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