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In-Medium Modifications of the �� Interaction in Photon-Induced Reactions
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Differential cross sections of the reactions ��;�0�0� and ��;�0��=�� have been measured for several
nuclei (1H,12C, and natPb) at an incident-photon energy of E� � 400–460 MeV at the tagged-photon
facility at MAMI-B using the TAPS spectrometer. A significant nuclear-mass dependence of the ��
invariant-mass distribution is found in the �0�0 channel. This dependence is not observed in the
�0��=� channel and is consistent with an in-medium modification of the �� interaction in the
I � J � 0 channel. The data are compared to �-induced measurements and to calculations within a
chiral-unitary approach.
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thereby changing width and pole position of the resonant 65% (208Pb) [15] of �0 and are statistically superior to
One of the challenges in nuclear physics is to study the
properties of hadrons and the modification of these prop-
erties when the hadron is embedded in a nuclear many-
body system. Although much has been learned about the
properties of hadrons in free space, there is a lack of
information for particles in a dense environment. In this
Letter, an experiment is described which has measured
correlated pion pairs photoproduced on nuclei in the
scalar-isoscalar J � I � 0 channel, also known as the �
mode. In Ref. [1] the � meson is identified as the f0 (400–
1200). The large natural width in free space of
 � 400–500 MeV [2] makes it doubtful that this par-
ticle is a mesonic state, and has initiated many discus-
sions on its nature. An in-medium study of the I � J � 0
channel could provide a better insight into the nature of
the � meson.

Within some theoretical approaches of quantum chro-
modynamics (QCD) [3–5], the � is treated as a pure q �qq
state (JP � 0�) and regarded as the chiral partner of the
pion (JP � 0�). Chiral symmetry is spontaneously bro-
ken in the QCD vacuum, resulting in a mass difference
between the pion and the �. For large baryon densities, it
is predicted that chiral symmetry is partially restored,
leading to a degeneracy in mass of the pion and the �.
Since the pion approximates a Goldstone boson, the pion
mass is not expected to change dramatically with increas-
ing nuclear density �. Hence, these models predict a
significant drop in the mass of the �. A measurement of
the in-medium � ! �� mass distribution might be es-
sential for the understanding of the mechanism of chiral-
symmetry breaking.

Alternatively, the in-medium � mode can be consid-
ered to be a resonant state of two pions [6–9]. In vacuum,
the �� system is mildly attractive. However, in the nu-
clear medium the �� interaction strength could increase,
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state. Experimental data on the density dependence of
pion-pair interactions in the nuclear medium can provide
evidence for this phenomenon.

The first measurement of the in-medium �� mass was
obtained by a pion-induced experiment by the CHAOS
Collaboration [10–12]. A rising accumulation of strength
at low ���� mass was observed with increasing nuclear
mass, whereas such an enhancement was not seen in the
����-mass distributions. This effect was interpreted as a
signature for an in-medium modification of the �� in-
teraction in the I � J � 0 channel. A similar effect was
found by a pion-induced experiment of the Crystal Ball
Collaboration [13] where a nuclear-mass dependence of
the �0�0-mass distribution was observed.

For the interpretation of the previously described pion-
induced measurements two issues have to be addressed.
The first one results from the final-state interactions,
rescattering and absorption, of the pions. Such effects
distort the actual ��-mass measurement. To minimize
pion final-state interactions, the incident-beam energy
was chosen such that the energies of the outgoing pions
were small, thereby maximizing their mean-free path.
The second issue is the strong interaction of the initial-
state pion with the medium. As a result, only the surface
of the nucleus is probed, leading to a small effective
nuclear density. The authors of Ref. [14] estimate an
average density of 24% of the interior nuclear density
�0 � 0:17 fm�3 for 40Ca. It was therefore proposed to
produce in-medium �� pairs with electromagnetic
probes, which illuminate the complete nucleus, and lead
to a larger effective density.

In this Letter, we present measurements of A��;�0�0�
and A��;�0��=�� for A � 1H, 12C, and natPb. These
measurements allow a study of the different ��-isospin
states at average effective densities of 35% (12C) to
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previously published data on photon-induced double-pion
production [16,17]. Data are presented for an incident-
photon energy of E� � 400–460 MeV. The centroid of
this interval corresponds to the same center-of-mass en-
ergy as was used in the pion-induced experiments, en-
abling a direct comparison and minimizing the effect of
final-state interactions of the two pions with the medium.

The experiment was performed at the photon-beam
facility at MAMI-B. Tagged photons [18,19] were
produced with energies between 200 and 820 MeV. The
beam intensity in the energy range of interest, E� �
400–460 MeV, was 107 s�1 with a photon-energy resolu-
tion of about 2 MeV. After collimation, the photon beam
was transported to a nuclear target in an evacuated beam
line. A series of measurements were carried out using
liquid-hydrogen, carbon, and lead targets with thick-
nesses of 10 cm, 2.5 cm, and 5 mm, respectively. The
photon-conversion (� ! e�e�) probability for all targets
is smaller than 10%.

The angles and energies of the pions were measured
using the TAPS photon spectrometer [20]. In this experi-
ment, the TAPS detector consisted of 510 hexagonal BaF2
scintillators. Sixty-two crystals, arranged in an 8� 8
matrix, formed a TAPS block. Six blocks were mounted
coplanar with the target at a distance of 55 cm and polar
angles of �55	, �105	, and �155	 with respect to the
photon-beam direction. The remaining 138 BaF2 crystals
were arranged in a rectangular forward wall which cov-
ered polar angles between 5	 and 38	. The complete setup
covered 
 40% of the total solid angle. Photons and
charged pions were identified by exploiting the time-of-
flight information of each detector. A 5 mm thick plastic
scintillator was placed in front of each crystal to differ-
entiate between neutral and charged particles.

Neutral pions were identified by an invariant-mass
analysis of the two decay photons. The two-photon
invariant-mass resolution (�) for �0 is 5.7%. A kinematic
fit was applied to improve the pion-energy resolution [21].
For the identification of the A��;�0�0� reaction, all four
final-state photons were registered in the detector. The
two-�0 invariant-mass (M�0�0) resolution (�) varies be-
tween 2.0% and 2.5% in the incident-photon energy range
of interest.

The capability to detect and distinguish neutral from
charged pions is essential for comparing pion pairs of
different isospin. Charged pions from A��;�0��=�� were
selected by exploiting the information on the time-of-
flight of the charged pion relative to the one of the
photons of the �0 decay and its deposited energy in the
BaF2 crystals [22]. Since the TAPS detector does not
include a magnetic field, positively charged particles
cannot be discriminated from negatively charged par-
ticles. The two-pion mass resolution (�) in the �0��=�

channel is <3:3%.
The dominant reaction mechanism in A��;�0�0� and

A��;�0��=�� channels is the quasifree production on the
constituent nucleons. Under this assumption, the unde-
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tected recoil nucleon was deduced from the incident-
photon energy and the momenta of the final-state pions.
Its reconstructed-mass distribution was found to be con-
sistent with Monte Carlo simulations using a quasifree
event generator. The background of the � ! 3�0 pro-
duction channel does not contribute, since the
incident-photon energy of E� � 400–460 is below the
�-production threshold.

Cross sections were deduced from the yield of the ��
events divided by the thickness of the targets, the photon
flux, efficiencies, geometrical acceptances, and the
branching ratio �0 ! ��. The intensity of the photon
beam was determined by counting the postbremsstrah-
lung electrons in the focal plane of the tagger. The loss of
photon intensity due to collimation was measured with a
100%-efficient BGO detector which was moved into the
photon beam at lowered beam intensity. The geometrical
acceptance and inefficiencies due to cuts and thresholds
were deduced from a Monte Carlo simulation based on
GEANT3 [23] libraries and an event generator assuming
a quasifree production mechanism. The generator was
modified such that energy and angular distributions of
the final-state particles agreed well with the observed
distributions [22]. The obtained acceptance was found to
be typically (0.2–0.4)%.

The measured M�0�0-mass distributions for incident-
photon energies of E� � 400–460 MeV are shown in
Fig. 1. A strong increase in strength towards small
M�0�0 with increasing A is observed. The dotted curves
in Fig. 1 indicate phase-space distributions determined by
the Monte Carlo model. The experimentally observed
peak position for A � 1H (a) lies higher than the phase-
space prediction whereas for A � 12C (b) the measured
mass distribution is compatible with phase space. For
A � natPb (c), the data disagree with phase space with a
probability of more than 99.8%. Most of the observed
strength lies below the peak of the phase-space distribu-
tion. A similar, but less pronounced, effect has been
observed in pion-induced reactions A���; �0�0� [13] at
a comparable center-of-mass energy. The experimentally
determined angular distributions in the A��;�0�0� reac-
tion of the �0�0 center-of-mass system are found to be
isotropic [22] and are compatible with J � 0, supporting
the conclusion that a significant A dependence is found in
the �� I � J � 0 channel in photon-induced reactions.

The solid curves in Fig. 1 are predictions by Roca et al.
[9]. Here, the meson-meson interaction in the scalar-
isoscalar channel is studied in the framework of a
chiral-unitary approach at finite baryonic density. The
model dynamically generates the � resonance, reproduc-
ing the meson-meson phase shifts in vacuum and ac-
counts for the absorption of the pions in the nucleus.
The data are described well by the model considering a
theoretical uncertainty of 20% [15]. It qualitatively pre-
dicts a mass shift as observed in the data. The basic
ingredient driving this shift is the p-wave interaction of
the pion with the baryons in the medium, resulting in an
222302-2
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FIG. 1. Differential cross sections of the reaction A��;�0�0�
with A � 1H, 12C, natPb for incident photons in the energy
range of 400–460 MeV (solid circles). Error bars denote
statistical uncertainties and the curves are explained in the text.
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in-medium modification of the �� interaction. A similar
calculation [14] is not able to describe the observed
A-dependence effect in the A���; �0�0� data [13], which
might be due to the interaction of the initial-state pion.

In order to compare the TAPS results with the pion-
induced measurements by the CHAOS Collaboration
[A���; �����], the composite ratio C�� is introduced
[12]

C���Pb=C� �
�d��Pb�=dM�=��Pb�
�d��C�=dM�=��C�

:
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FIG. 2. The composite ratio C�� for A��;�0�0� (solid sym-
bols) compared to A���; ����� (open squares) obtained by
the CHAOS Collaboration [10–12]. The curves are second-
order polynomial fits through the data.
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The results are shown in Fig. 2. The photon-induced
A��;�0�0� data (solid circles) are compared to the pion-
induced A���; ����� measurement by the CHAOS
Collaboration [10–12] (open squares). The solid and
dashed curves represent empirical second-order polyno-
mial fits through the photon-induced and pion-induced
data, respectively. In both cases, an increase in strength
towards small M�� masses is observed. This increase is
stronger in A��;�0�0� than in A���; ����� reactions,
which could be related to photons probing the entire
nucleus leading to larger effective densities than with
pion beams.

To study the nuclear-mass dependence of the double-
pion mass in a different isospin channel than I � 0, we
have concurrently measured differential cross sections of
the reactions A��;�0��=��. The same energy interval of
E� � 400–460 MeV was chosen. The results for A � 1H,
12C, and natPb are depicted in Fig. 3. The data do not show
an A dependence in shape as was observed in the corre-
sponding M�0�0 distributions. For all targets, the data
follow the phase-space distributions depicted as dotted
curves, indicating that significant in-medium effects in
the isospin I � 1 channel are not observed. The solid
curves represent predictions by Roca et al. [15] and are
performed in a similar framework as the model for M�0�0

distributions [9]. The model underestimates the experi-
mentally determined cross sections by 
 20% for all
nuclei, while describing the shape of the data rather
0

0

2.5

250 300 350 400 450

A1
σ d 
  /

dM
 (

nb

Pb

ππM     [MeV]

c) nat

FIG. 3. Differential cross section of the reactions p��;�0���
(a) and A��;�0��=�� with A � 12C, natPb (b), (c) for incident
photons in the energy range of 400–460 MeV (solid circles).
Error bars denote statistical uncertainties and the curves are
explained in the text.
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FIG. 4. Ratios between the differential cross sections for A �
natPb and A � 12C for A��;�0��=�� (a) and A��;�0�0� (b).
The solid curves represent predictions by Roca et al. [9,15].
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accurately. Since the � resonance does not couple to
�0��=�, the model shows no shift in strength towards
smaller M�� masses with increasing A.

Figure 4 shows the ratio RPb=C between the differential
cross sections per nucleon for A � natPb and A � 12C of
the reactions A��;�0��=�� (a) and A��;�0�0� (b) up to
M�� masses of 400 MeV. The experimentally determined
ratio RPb=C for the �0��=� reaction is found to be flat,
indicating that final-state interactions, absorption, and
rescattering of the individual pions with the medium do
not modify the shape in the mass distribution signifi-
cantly. The model of Roca et al. [15] supports this
conclusion as can be observed from the solid curve. A
significant in-medium shape effect is observed in the
ratio RPb=C for the �0�0 channel as depicted in
Fig. 4(b). Since an in-medium modification is not seen
in the �0��=� reaction, this effect cannot be explained by
A dependencies in the production mechanism and final-
state interactions of the individual pions with the me-
dium. The prediction by Roca et al. [9] with a theoretical
uncertainty of 10% [15] is depicted as the solid curve in
Fig. 4(b).

In conclusion, we have observed an effect consistent
with a significant in-medium modification in the
A��;�0�0� (I � J � 0) channel. For the first time, the
A dependence of the ��-mass distributions in photon-
induced reactions on nuclei has been measured. With
increasing A, the strength in these distributions is shifting
towards smaller invariant masses. Earlier measurements
using pion beams found a similar, but less pronounced
effect. Photon-induced experiments have the advantage
that initial-state interactions are absent and larger effec-
tive densities can be reached which enhance in-medium
effects. The distortion of the ��-mass distribution due to
222302-4
A dependencies in the production mechanism and final-
state interactions of the individual pions with the con-
stituents of the nucleus have been studied by measuring
the �0��=� mass distribution concurrently. A significant
in-medium effect was not observed. According to Roca
et al. [9], the modification observed in the �0�0-mass
distributions can be attributed to a change of the ��
interaction. The comparison with the experimental data
hints at the nature of the � meson as a �� resonance. It
would be most desirable to confront this observation with
QCD models which treat the � as a q �qq state and explicitly
take chiral-symmetry restoration into account.
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