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High-Temperature Superfluidity of Fermionic Atoms in Optical Lattices
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Fermionic atoms confined in a potential created by standing wave light can undergo a phase
transition to a superfluid state at a dramatically increased transition temperature. Depending upon
carefully controlled parameters, a transition to a superfluid state of Cooper pairs, antiferromagnetic
states or d-wave pairing states can be induced and probed under realistic experimental conditions. We
describe an atomic physics experiment that can provide critical insight into the origin of high-
temperature superconductivity in cuprates.
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[19,20]. In particular, d-wave superconducting states strength is much weaker than the kinetic energy and the
The experimental realizations of degenerate Bose [1]
and Fermi [2–5] atomic samples have stimulated a new
wave of studies of quantum many-body systems in the
dilute and weakly interacting regime. The intriguing
prospective of extending these studies into the domain
of strongly correlated phenomena is hindered by the
apparent relative weakness of atomic interactions. For
example, an active search is now under way to implement
a BCS transition of degenerate fermionic gases to a super-
fluid (SF) state analogous to superconductivity [6,7].
However, in free-space or weakly confining atom traps
the transition temperature to the SF state scales exponen-
tially with interaction strength, kBTfree

c � 0:3Efree
F �

exp��	=�2kFjasj��, with Efree
F the Fermi energy. For a

dilute atomic gas the product of Fermi momentum and
scattering length kFjasj 	 1, which makes the transition
temperature exceedingly low. Efforts are presently being
directed toward increasing the atomic interaction
strength by means of Feshbach resonances [8–11].
However, departure from the dilute regime often comes
at the price of enhanced losses [12] and/or instabilities
which may have particularly severe consequences for
fermionic systems [13].

The effects due to interactions can, however, be en-
hanced if the atoms are confined in optical potentials
created by standing light waves [14–16]. Very recently,
fascinating experiments involving bosonic atoms in opti-
cal lattices [15] revealed a quantum phase transition from
a SF to Mott insulating state [14,17]. Fermionic atoms
confined in an optical lattice can undergo a phase tran-
sition to a SF state at a temperature that exceeds that of
weakly confined atoms by several orders of magnitude.
Attractive atomic interactions result in s-wave pairing in
which case fermionic atoms can undergo a BCS-type
transition [18]. In what perhaps is the even more intrigu-
ing prospective, fermionic atoms with repulsive interac-
tions correspond to an experimental realization of a
Hubbard model that is widely discussed for strongly
correlated electron systems such as high-Tc cuprates
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[21] have been conjectured to exist in such systems, but
so far this conjecture eluded rigorous confirmation. We
show that atomic systems with carefully controllable
parameters and a variety of precise tools to detect the
resulting phases can be used to provide a critical insight
into this outstanding problem. In essence, this approach
can be viewed as an implementation of the pioneering
ideas due to Feynman [22] for simulations of one quan-
tum system by another.

Consider an ensemble of fermionic atoms illuminated
by several orthogonal, standing wave laser fields tuned
far from atomic resonance. These fields produce a peri-
odic potential for atomic motion in two (or three) dimen-
sions of the form V�x� 
 V0

P2�3�
i
1 cos

2�kxi� with k the
wave vector of the light. The potential depth V0 is typi-
cally expressed in the units of the atomic recoil energy
ER 
 
h2k2=2m. We will be interested in the situation in
which there is roughly one atom per lattice site. Such
atomic densities correspond to free-space Fermi energies
on the order of Efree

F 
 �3=	�2=3ER. We assume that two
kinds of atoms are present, differing by angular momen-
tum or generalized spin (� 
 f"; #g). For sufficiently low
temperatures the atoms will be confined to the lowest
Bloch band, and the system can be described by a
Hubbard Hamiltonian [14,20]

H 
 �t
X

fi;jg;�

�c�i;�cj;� � c�j;�ci;�� �U
X

i

ni;"ni;#; (1)

where ci;� are fermionic annihilation operators for local-
ized atom states of spin � onsite i, ni;� 
 c�i;�ci;�. The
parameter t corresponds to the tunneling matrix element
between adjacent sites, t 
 ER�2=

����
	

p
��3 exp��2�2�, and

the parameter U 
 ERask
���������
8=	

p
�3 characterizes the

strength of the onsite interaction with � 
 �V0=ER�
1=4.

Consider first the attractive case (U < 0). The effect of
the lattice on the superfluid transition can be best under-
stood starting from the limit of large tunneling t � jUj.
Here, similar to the free-space transition, the interaction
 2002 The American Physical Society 220407-1
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FIG. 1 (color online). (a) Attractive fermionic atoms in
optical lattices. (b) Critical temperature for the SF transition
of Li6 atoms (circles) as a function of the optical lattice depth
in a 3D CO2 lattice. Li atoms in the states j # �"�i 
 jF 

1=2; mF 
 �1=2i are considered at a magnetic field of
�0:1 T corresponding to as ��2:5� 103a0. The absolute
energy scale is given by t= 
h � 0:5 kHz at the phase transition.
For the same density and scattering length, the free-space BCS
formula yields T0

c 
 1:6� 10�12Efree
F =kB for Li6. Inset: analo-

gous plot for K40 atoms in a Nd:YAG lattice at half filling at a
magnetic field above a Feshbach resonance and as ��2:�
102a0. Dashed curve: the adiabatic cooling effect described in
the text.
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ground state of the system is then given by a ‘‘standard’’
BCS wave function, with an energy gap and transition
temperature Tc that depend upon t and U [23]. BCS
theory can be applied to predict a critical temperature Tc
that for a 3D situation scales as kBTc � 6t exp��7t=jUj�
[23]. An increase in the depth of the optical potential
results in stronger atom localization and hence an in-
creased interaction strength U. At the same time, the
tunneling t becomes weaker. The combined effect of
these two factors is a dramatic increase in Tc.

As the tunneling becomes comparable to the onsite
interaction, the BCS picture is no longer valid. Because
of strong attraction, atoms form pairs within single lattice
sites. The entire system can then be considered as an
ensemble of composite bosons. They can tunnel together
at a rate �t2=jUj, by virtual transitions via intermediate
singly occupied states. In this regime nonordered pairs
exist at high temperatures, whereas the superfluid state —
a condensate of composite bosons — appears below
kBTc � t2=jUj. Clearly, in this limit the increase in the
potential depth will lead to a reduced mobility of pairs
and hence a decrease in Tc. The maximal critical tem-
perature Tmax

c is achieved at the crossover between the two
regimes, when interaction and tunneling are comparable
(more precisely at U� 10t), which corresponds to a po-
tential depth �2 � 1=2log�5

���
2

p
=kjasj� and

kBTmax
c � 0:3Efree

F kjasj: (2)

That is, the critical temperature for atomic fermions
trapped in a lattice scales only linearly with the small
parameter kjasj. Our accurate results for the critical
temperature are based on nonperturbative Monte-Carlo
simulations of the fermionic Hubbard model [23].

Several specific approaches to achieve the SF state can
be considered. For example, the optical potential can be
adiabatically turned on, starting from a weakly confined
Fermi-degenerate mixture of the two atomic states of
appropriately chosen density. In this procedure the atomic
quasimomentum is approximately conserved but the band
structure associated with the periodic potential changes,
resulting in a nonequilibrium distribution, with an
effective temperature different from the initial Tin. The
final temperature Tf after thermalization can easily
be estimated from the relation

P
k �kf��

0
k=Tin� 
P

k �kf��k=Tf�, where f�x� 
 1=�ex � 1� is the Fermi-
Dirac distribution function, �0

k 
 k2=2m��0 is the
original dispersion of atoms in free space, and �k 

�2t�cos�kxa� � cos�kya� � cos�kza�� �� is the disper-
sion in a tight-binding model with a 
 	=" the lattice
period. Two important processes determine Tf. First of
all, the presence of the lattice makes the system aniso-
tropic and hence changes the shape of the Fermi surface.
This results in an effective heating of the system as V0

increases from zero to about ER. As V0 is increased even
further the shape of the Fermi surface remains approxi-
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mately the same and only the Fermi velocity (or effective
atomic mass) changes, leading to a reduction of the
effective temperature within the lowest Bloch band (see
Fig. 1). This suggests that it is optimal to turn on a weak
lattice potential while the fermionic sample is in contact
with a cooling reservoir (e.g., atomic BEC), thus avoiding
the heating which is present at the initial stages of creat-
ing an optical lattice.When V0 � ER (point C in Fig. 1(b))
the system is decoupled from the reservoir and the lattice
potential is increased until the transition to the SF phase
is reached.

To control precisely the resulting quantum phase, an
accurate manipulation of the filling fraction may be im-
portant. This can be achieved, for example, if atoms with
three internal states are used. If a dense, degenerate
ensemble is prepared in a state that is not affected by
the optical lattice, a laser driven Raman transition into a
pair of trapped spin states can be used to produce exactly
one atom (or its fraction) per each lattice site. The essen-
tial idea of this approach is that the energy shifts asso-
ciated with atom interactions and the Pauli principle can
be used to block the transitions into states with more than
one atom per lattice site. In this case an effective #	-pulse
will result in a filling fraction of # with an uncertainty
that scales with the inverse size of the lattice.

Let us now consider the implications of these results in
the light of present experimental possibilities. The rele-
vant critical temperature calculated numerically for Li6

[3] and K40 [2] atoms is shown in Fig. 1. In this figure we
consider a Li6 atomic sample of a very modest density
corresponding to a unity filling in an optical lattice
produced by a CO2 laser (" 
 10 �m). For such densities,
a dramatic increase in the critical temperature is possible.
220407-2
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FIG. 2 (color online). In the case of repulsive interactions one
finds either antiferromagnetic (AFM, upper left) or d-wave SF
phases (lower left), depending upon the filling fraction n.
Right: phase diagram for repelling Li6 atoms in a 2D lattice
(obtained in the fluctuation-exchange approximation). Adia-
batic cooling due to switching on of the lattice has been taken
into account. Note: the repulsive Hubbard model may also have
phase separation for some filling factors, which corresponds to
immiscibility of the two spin species of the atoms.
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FIG. 3. Central part of the atomic interference pattern after a
free expansion for a time t 
 500� � 
h=ER� and a 10� 10
optical lattice (with lattice constant a). Left: normal state at
half filling. The sharp edges of the interference peaks reflect
the atomic momentum distribution. Right: BCS state at half
filling, with a gap '=t 
 0:6 corresponding to U=t � �2:5.
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FIG. 4. Left: Bragg scattering of atoms off laser beams with
frequency difference %! and wave-vector difference qx 

qy 
 0:1	 for attractive fermions at filling n 
 0:6 and U=t 

�2:5, corresponding to an s-wave gap '=t � 0:45. Inset: dis-
persion of the collective mode (solid line) and the onset
frequency of the continuum (dashed line). Right: schematic
picture of the two-photon process involved with (1;2 Rabi
frequencies.
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Note, in particular, that a phase transition can be achieved
starting from an initial temperature of about 0:1Efree

f . The
CO2 lattice has the additional advantage of exceptionally
long lifetimes, which should be sufficient to achieve the
transition even for relatively low energy scales involved.
Another scenario is to trap Li atoms in an optical lattice
created by a Nd:YAG laser "� 1:06 �m. Although in
this case the densities of 1012–1013 cm�3 will correspond
to a filling fraction slightly less than unity, the resulting
critical temperature can still be in the range of 0:1Efree

F .
The inset shows a diagram for K40 atoms trapped in a
similar lattice. As indicated by the two cases presented in
Fig. 1 the transition to a SF state is expected to occur for
the same initial temperature if adiabatic cooling is taken
into account. Therefore, the maximal initial temperature
at which a phase transition can occur is almost indepen-
dent of the scattering length and corresponds to about one
tenth of the free-space Fermi energy.

We emphasize that in contrast to the approaches that
are based on increasing the scattering length or the atom
density, which result in an interesting regime of BCS-
BEC crossover [9–11], the critical temperature for the
lattice filled with attractive atoms (Fig. 1) can be pre-
dicted very accurately even in the most interesting, inter-
mediate, regime t� jUj, since the behavior of the
Hubbard model for this case is by now very well under-
stood. While the free-space ensembles at densities
njasj

3 > 1 can no longer be considered as a weakly
interacting gas [9,10], the Hubbard model remains a valid
description for the lattice even in the regime of very
strong confinement.

It is intriguing to consider possible extensions of the
above ideas to a situation in which different atoms repel
each other (as > 0). This is realized for atomic K40 at
zero magnetic field [2]. In this case it is energetically
unfavorable for two atoms to be on the same lattice site.
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However, adjacent atoms can virtually tunnel to the same
site. This process lowers the total energy of two atoms in
adjacent wells, thereby creating effective hard-core at-
tractive interactions of different spins. When the filling
fraction of the lattice is close to 1, this leads to a ground
state in which adjacent sites are always occupied by atoms
with alternating spins (see Fig. 2), i.e., an antiferromag-
netic phase.

For filling fractions smaller than 1 it has been conjec-
tured [21] that anisotropic d-wave pairs can be formed,
which can result in a d-wave SF phase capable of explain-
ing many of the observed properties in high-temperature
superconducting cuprates. So far the existence of d-wave
superconductivity in the repulsive Hubbard model has
eluded rigorous confirmation. We propose that these ideas
can now be tested experimentally in ensembles of fer-
mionic atoms. For example, Fig. 2 shows a phase diagram
for the system of repulsive atoms in two dimensions [21]
calculated within the fluctuation-exchange approxima-
tion [24]. Although the resulting Tc is believed to be
somewhat lower than in the s-wave case, this calculation
suggests the existence of the d-wave phase for feasible
atomic temperatures and densities.
220407-3
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FIG. 5. Probing d-wave pairing at filling n < 1 via Bragg
scattering. Left: schematic diagram of the Fermi surface (solid
line) and the q dependence of the gap '�qx; qy� (dashed line).
At the four nodal points shown by black dots, the wave function
and the quasiparticle excitation energy vanishes. For the spe-
cial wave vectors connecting these points, the density response
is gapless (black spots in the right figure). Right: onset fre-
quency !min�qx; qy� of the quasiparticle continuum, dark re-
gions corresponding to low frequencies (vanishing gap).
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We next consider several approaches that can be used to
detect and accurately probe the resulting quantum phases.
Interference of atoms released from the lattice has been
used to probe the superfluidity of bosons [15]. In the
degenerate regime, atomic interference patterns for each
momentum state will be superimposed due to the exclu-
sion principle, resulting in real-space interference peaks
which reflect the shape of the Fermi surface, see Fig. 3.
Broadening of these peaks is mainly due to finite tem-
perature and the finite diameter of the harmonic trap.
With the appearance of pairing, the atomic momentum
in the pairs becomes on the order of Planck’s constant
divided by the size of the pair. As a result, the momentum
distribution will be additionally broadened, which is re-
flected in the interference pattern. At the temperatures
currently available, this diagnostic method may be more
difficult than the detection of the collective mode dis-
cussed below.

In order to detect superfluidity of the pairs, photoasso-
ciation spectroscopy [25] can be used. Weakly bound
Cooper pairs can be converted into molecules by using
a laser-induced transition into a bound molecular state.
The interference pattern of the released bosonic mole-
cules will then provide extremely sharp peaks due to the
presence of a SF fraction, in direct analogy to [15].

The spectrum of elementary excitations also provides
an accurate probe for the nature of the quantum phase. It
can be measured in a system of cold atoms by exciting the
motional states of atoms using laser pulses. For example,
atoms can experience Bragg scattering off two noncol-
linear laser beams, provided that the frequency difference
%! of the lasers matches the resonance frequency of
elementary excitation with momentum q determined by
the angle between two lasers (Fig. 4) [26]. This technique
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provides a direct measurement of the density-density
correlation function. By monitoring the number of
Bragg-scattered atoms as a function of %!, the presence
of a SF phase can be detected unambiguously: One ob-
serves a sharp peak due to a collective Bogoliubov mode,
which is slightly broadened as a result of the finite trap
size. It is separated from a broad feature, corresponding
to quasiparticle excitations, by an energy gap (see Fig. 4).
In the normal state, on the other hand, the continuum
excitations are gapless and the collective mode is not
visible due to strong damping. With this technique, it is
also possible to detect d-wave superfluidity considering,
for example, the onset frequency of the quasiparticle
continuum corresponding to the d-wave SF phase (see
Fig. 5). A strong anisotropy, together with a vanishing gap
for certain momenta can provide unambiguous evidence
for the presence of such a phase.
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