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Dissipation and decoherence, and the evolution from pure to mixed states in quantum physics, are
handled through master equations for the density matrix. By embedding elements of this matrix in a
higher-dimensional Liouville-Bloch equation, the methods of unitary integration are adapted to solve
for the density matrix as a function of time, including the nonunitary effects of dissipation and
decoherence. The input requires only solutions of classical, initial value time-dependent equations.
Results are illustrated for a damped, driven two-level system.
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The study of open quantum systems is of widespread
interest across different areas of physics, particularly in
the irreversible processes of dissipation and decoherence
afforded by coupling to an external reservoir or environ-
ment. Quantum optics is replete with such studies for
optical bistability, resonance fluorescence, and the gen-
eral evolution from pure to mixed states, often considered
through damped, driven two-level atoms [1]. Coupled
quantum wells in a wider context and the study of quan-
tum Brownian motion, dissipation and fluctuations have
also received much attention [2]. Application of such
considerations to ‘“‘quantum nondemolition” in the
emerging field of laser-interferometric gravitational
wave detection, and of quantum noise and decoherence
in the field of quantum computation, add to the impor-
tance of this subject. Finally, this evolution from pure to
mixed states is at the heart of the problem of measure-
ment in quantum theory [3].

On the other hand, unitary integration schemes for the
evolution operator of time-dependent Hamiltonians,
when available, are powerful because they preserve in-
variants and are stable, also in numerical application. In
this Letter, we present a general procedure and illustrate
with an example how to preserve most of these advan-
tages even while working with systems exhibiting dissi-
pation and decoherence. There are two key steps. First,
the n-dimensional Liouville—von Neumann-Lindblad
(LVNL) equation containing dissipation and decoherence
is embedded in a (n? — 1)-dimensional Liouville-Bloch
form with a non-Hermitian Hamiltonian. Second, this
Liouville-Bloch equation is handled by a “unitary inte-
gration” procedure that has been described in recent
years [4—6] wherein the evolution operator is written as
a product of exponentials, each exponent involving an
element of a closed Lie algebra of operators together
with a multiplicative classical function of time. With all
the noncommutativity handled analytically, the entire
problem is reduced to solving coupled, first-order differ-
ential equations for this set of classical functions. In
many cases, this set reduces to a single nontrivial
Riccati (first-order, quadratically nonlinear) equation for
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one of the classical functions, all the rest then obtained
through trivial quadratures [6]. All of the above features
remain valid even when the Hamiltonian is non-
Hermitian and the evolution nonunitary.

Two other papers share our aims in setting the passage
from pure to mixed states in a unitary evolution scheme,
but they proceed differently. One deals with weak dis-
sipation, handling the Hermitian part of the LvNL equa-
tion through unitary integration and the dissipative terms
through conventional integrators [7]. Because of their
focus on numerical integration, both these handlings
are for small time steps, whereas we aim for integration
over arbitrary, finite 7. Another work [8] introduces a
novel ‘“‘square root operator’” of the density matrix and
an associated n?-dimensional Hilbert space, along with
additional constraints that are not in conventional quan-
tum mechanics. Our embedding in a higher-dimensional
space does not introduce any new elements beyond those
already in the density matrix. After submitting our Let-
ter, we have learned of another work that solves master
equations by invoking an “auxiliary” n?-dimensional
Hilbert space [9].

We begin with the master equation for the density
matrix p, sometimes called the Liouville—von
Neumann-Lindblad equation [1-3],

ip=1[H, p]+ %iZ([Lkpr L{1+ Ly, pL{])
k

L
=[H, p] = 5i > (L{Lip + pLILy = 2LipL), (1)
k

where an overdot denotes differentiation with respect to
time and /i has been set equal to unity, H is a Hermitian
Hamiltonian, and the second term on the right-hand side
is the “Liouvillian superoperator” describing coupling to
the environment and the resulting irreversibilities of dis-
sipation and decoherence. The above form in the Markov
approximation with an explicitly traceless right-hand
side guarantees conservation of Tr(p) and positivity of
the probabilities. For a more mathematical description
in terms of so-called “dynamical semigroups,” we
refer to [10,11].
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Our aim in this paper is to solve Eq. (1) for fairly
general time dependences of H and the L’s contained in
it, while keeping as close as possible to the unitary
integration that applies in the absence of the superopera-
tor. This method [4—6] has been developed when H(z) is a
sum of terms, each of which involves a time-independent
operator multiplying a classical function of time. In such
a case, without any recourse to time-ordered Dyson ex-
pansions, one can solve for the evolution operator U(r)
satisfying

iU(t) = H@oU (), Uu) =1, 2)
by writing U(t) as a product
U(1) = [ Jexpl—in;(04;] 3)
J

where A; are the operators contained in H(t) together
with a sequence of other operators formed out of their
mutual commutators in a successive fashion. If this set
forms a closed algebra under commutation, then upon
substitution, Eq. (3) can be shown to satisfy Eq. (2)
through repeated application of the Baker-Campbell-
Hausdorff (BCH) identity [4,6]. This results in a well-
defined set of coupled first-order, generally nonlinear,
equations for the functions w;(f). Thereby the quantal
problem is reduced to the classical one of solving this set
of equations, following which p(¢) is obtained as

p(1) = U@0)pO)U (). (4)

In extending this procedure to nonunitary evolution, if
we were to retain only the first two terms in the super-
operator, it is simple to extend Eq. (4) by using two
different products U,(z) and Ug() so that p(r) =
U (2)p(0) U,Jg(t), with correspondingly different functions
wr;(t) and ug;(2) in Eq. (3). Once again, upon calculating
ip with such a form, the BCH identity can be used to get a
well-defined set of equations for the w; and wg.
However, the last term in the superoperator in Eq. (1),
wherein p(r) occurs between operators multiplying it both
on the right and from the left, no longer permits easy
generalization. Note that this last term is the so-called
“quantum jump” in interpretations of the LvNL equation
as conventional continuous evolution, albeit with a non-
Hermitian Hamiltonian, plus a jump [12].

For the full master equation, we proceed by separating
the invariant Tr(p) from the n® elements p;;(r).
Equation (1) then reduces for the remaining n*> — 1 ele-
ments to the Liouville-Bloch form

in() = L)), (5)

where one convenient choice for the (n?> — 1) elements of
nispi — P i =230 pij + pjis Pij — Pjis L > .
The first (n — 1) of these describe the diagonal elements
of the density matrix, the other (n®> — n), i # j, describe,
respectively, in-phase dispersive and out-of-phase ab-
sorptive components of polarization. Even though L
may not be Hermitian, the form of Eq. (5) is now the
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same as in Eq. (2) with all operators to the left of 5 so
that the same procedure of a product exponential form for
n(t) as in Eq. (3) can be carried out now in the (n?> —
1)-dimensional space. Thereby, the LvNL equation for p
has been embedded in a higher-dimensional Liouville-
Bloch equation. While invariants are no longer preserved
with £ non-Hermitian, the advantages of exponential
factors, with all operator aspects handled analytically
and only classical time-dependent equations to solve, still
remain.

One immediate consequence is worth noting. If the
operators L; in Eq. (1) are such that £ in Eq. (5) involves
imaginary elements and, consequently, i decays asymp-
totically, 5(t — 00) — 0, then all coherences vanish (off-
diagonal p,;) and all diagonal p;; become equal, p;;(t —
o0) — (1/n)Tr(p(0)). Tr(p?) on the other hand, decreases
asymptotically to (1/n) of its initial value. A specific
n = 2 illustration of this rather general conclusion will
be given below.

To demonstrate this method, we turn now to a series of
recent papers [13] that discussed phase coherences and
transitions in a periodically driven two-level system with
a single L in Eq. (1):

H=1ie(o, + Jo, L=ATo, ©
pij(()) = 51‘,/‘51'1-
Applying our procedure, we have p,;(r) + py(2) = 1,

and Eq. (5) for the three remaining elements takes the
form

P12t P2 —iI' —e(®) 0
ia pa—pn | =| —€@) —iI' 2J
P11~ P2 0 270 (7
P12 T pa
X | pa — P2
P11~ P22

To solve this as a product of exponentials, we need the
eight operators of an SU(3) algebra. Instead, we illustrate
first a simplified variant of Eq. (6) as our model, with a
symmetric choice for the L; involving all three Pauli
matrices, that is, L, = mg'k. This modifies Eq. (7) to
introduce also a (—il) in the third diagonal element of the
matrix. With the matrix then expressible as

L=—i'T—- €A, +2JA,, (8)
where A, Ay, A, are the operators of angular momentum
in a representation

0 00 0 0 —i

Ax = 0 O 1 ’ AV = 0 O O >
010 i 0 0 ©)
010

A,=11 0 0,

0 0O
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the closed Lie algebra of these three suffices to solve
Eq. (5) by our unitary integration procedure. Since this
procedure rests only on the commutators between A ;, we
can use any representation of them as is convenient. We
exploit this in choosing Eq. (9) so that L involves the A;
only linearly. Although, for comparison with [13], only €
in Eq. (8) is a function of time, we note that everything
that follows applies also to more general time depen-
dences of J and I' and inclusion of a time-dependent
term in A, as well. We also note that reduction of the
term involving I' in Eq. (8) to a unit operator reflects a
general sum rule in any dimension n. When & in Eq. (1)
runs over all n? linearly independent operators, that sum-
mation reduces to 2(np;; — ;).

The first term in Eq. (8) leads to a trivial factor
exp(—I'7) and the remaining Hermitian part of £ has
been solved before [6]:

n(t) = exp[—T't]exp[—ip, (A Jexp[—in (A _]
X eXP[_lM(l‘)Az]n(O), (10)

with A, = A, * iA,, 7(0) = (0,0, 1), and

fos —i€ps — I+ p2) =0, (11a)
w=2ilu, — elt), (11b)
foo —ippo =J, p(0)=0. (llc)

The first of these equations, involving . (¢) alone in
Riccati form, is the only nontrivial member of this set.
Solutions give through Eq. (10),

pii(t) =% +1exp(=Tn[1 = 2u (Hu_(1)]

pn(t) =3[1 —exp(=T'D] + w () (1) exp(—T),
po(t) =ip_(t)exp(—T7),

po () = ip (O (Dp-_ (1) — 1]exp(=T7). (12)

These are general solutions, valid for any time. The
coherences vanish asymptotically, and p;; and p,, attain
the value 1 as r— co. While Tr(p) remains always at
unity, Tr(p22) decreases to (1/2). The above assumed as
the initial state the pure state with p,;(0) = 1 the only
nonzero element, but a wider choice also leads to the same
final result. Simple numerical integration of Eq. (11a) for
an oscillating driving field e(f) = A cos(wt) is shown
in Figs. 1 and 2 for various values of the parameters
(w,J,A,T). They are in agreement with [13]. In
Fig. 2(c), we also record the time evolution of the entropy,
S = —Tr(pInp). The value of I' governs the rate of rise as
S increases monotonically from O to its asymptotic limit
of In2.

We already noted from the 3 X 3 matrix structure of
Eq. (7) that for the most general H and L in Eqg. (6), a
product of eight exponential operators always provides
the requisite 1(r). As another illustration of a smaller set
sufficing, when only three of the four linearly indepen-
dent matrices are included in L;, an additional inhomo-
geneous term in the column vector —iI°(0, 0, 1) appears
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FIG. 1. py, () for an oscillating driving field with J/w = 3,

A/w = 45, and damping values (a) I'/w = 0, (b) I'/ @ = 0.35,
and (¢) I'/w = 5.

on the right-hand side of Eq. (5), with £ again as in
Eq. (8). For J = 0, this is easily solved, diagonal and
off-diagonal elements decoupling, and gives the result
that a mixed state evolves to the pure state (1, 0).

The reduction in the number of exponential factors
required is a generic feature, whenever £ in Eq. (5)
involves only the elements of a subalgebra of the full
algebra of SU(n*> — 1). Thus, in the n = 2 examples con-
sidered above, the existence of SU(2) subalgebras allows
solutions with just three exponential operators in Eq. (10).
Denoting the eight operators of SU(3) by O;,,i =1 — 8,
with one choice for them being (A,, Ay, A_, A3, A%, A2,
AjA; + A3AL,A_A; + A3AL), there are several triplets
that close under commutation. These include the familiar
i =(1,2,3) as in Eq. (8) but also many others such as
(1,5, 6) and (1, 7, 8). There are also subalgebras involving
four [for example, (1,2,5,7) and (1,3,6,8)] and five
elements [for examples, (1,2,4,5,7) and (1, 3,4, 6,8)] in
which case four or five exponential factors, respectively,
would suffice for our solution in Eq. (10). As n increases,

220405-3



VOLUME 89, NUMBER 22

PHYSICAL REVIEW LETTERS

25 NOVEMBER 2002

04 | ;ﬂ;‘ n
) ‘ | W‘ |
P, o ?MMJ J Mw u ]\} “ U \}H
y BET P )
P 0 www’N_MWM%,“u’\/mWwWWM
(c)
s

FIG. 2. As in Fig. 1, for p;,(f) with (@) I'/w =0 and
(b) I'/w = 0.35. The entropy S for I'/w = 0.29 is shown in (c).

although the total number of operators n? — 1 grows

rapidly, once again, £ may involve only the operators
of subalgebras, SU(n*> — 1) containing many subalgebras
of lower order all the way down to SU(2) with just three
operators. Indeed, with increasing n, there are many more
such subalgebras so that very often the H and L; may
afford reduction of the number of exponentials in our
procedure to a small number.

In summary, an n-dimensional LvNL equation describ-
ing dissipation and decoherence (or, alternatively,
continuous evolution plus a quantum jump) of the
density matrix p(z) is first embedded into an (n? —
I)-dimensional Liouville-Bloch equation for diagonal
and off-diagonal combinations 7(r) of p(¢). A unitary
integration scheme is then applied to this form of the
equation, with 7(f) expressed as a product of exponentials
involving a limited, finite number of factors and opera-
tors, often just the three of angular momentum. Through
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this procedure, all elements of p(¢) are obtained in terms
of solution of a single Riccati equation for a clas-
sical function together with ordinary multiplication and
integration.

We thank Dr. Dana Browne and Dr. Lai Him Chan for
suggesting we follow the entropy of evolution.
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