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Vacuum Induced Spin-1/2 Berry’s Phase

I. Fuentes-Guridi,1 A. Carollo,1,3 S. Bose,2 and V. Vedral1
1Optics Section, The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

2Centre for Quantum Computation, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, England
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We calculate the Berry phase of a spin-1/2 particle in a magnetic field considering the quantum
nature of the field. The phase reduces to the standard Berry phase in the semiclassical limit and the
eigenstate of the particle acquires a phase in the vacuum. We also show how to generate a vacuum
induced Berry phase considering two quantized modes of the field which has an interesting physical
interpretation.
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system and the vacuum field. In fact, we show that even if by the path followed by B in parameter space.
Geometric phases in quantum theory attracted great
interest since Berry [1] showed that the state of a quantum
system acquires a purely geometric feature (called the
Berry phase) in addition to the usual dynamical phase
when it is varied slowly and eventually brought back to its
initial form. The Berry phase has been extensively
studied [2,3], generalized in various directions [4], and
has very interesting applications, such as the implemen-
tation of quantum computation by geometrical means
[5–7]. In a strict sense, however, the Berry phase has
been studied only in a semiclassical context until now.
This means that the geometric evolution of a quantum
system is studied under the effect of a time varying
classical field. However, this field itself has never been
quantized [8]. Thus, the effects of the vacuum field on the
geometric evolution are unknown. Many effects in quan-
tum optics such as quantum jumps, collapses, and revivals
of the Rabi oscillations [9], can be explained only by
considering a quantum field, showing the importance of
field quantization in the complete description of physical
systems. Moreover, in quantum mechanics several inter-
esting effects are observed due to the interaction of quan-
tum systems with the vacuum (spontaneous emission,
lamb shift) [10].

The canonical experiment that demonstrates the exis-
tence of the Berry phase involves a spin-1/2 particle
interacting with an external magnetic field whose direc-
tion is slowly changed in a cyclic fashion [5,11]. In this
Letter we analyze such an experiment in a fully quantized
context and give an expression for the geometric phase of
a joint state of the particle and field that, as expected,
reduces to the standard Berry phase in the high amplitude
limit of a coherent state of the field. The relevant differ-
ences between this phase and the semiclassical version of
the Berry phase become evident when states with low
photon number are considered. We show that in the fully
quantized scheme it is possible to produce nontrivial
geometric phases that have no correspondence to phases
that can be generated in the semiclassical scenario. The
main difference arises from the interaction of the spin-1/2
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the field is in the vacuum state, an adiabatic evolution of
the field can be engineered to induce a nontrivial geomet-
ric phase in the system.

We calculate the deviations from the semiclassical
model when a spin-1/2 particle interacts with a single
mode quantum field. In addition, we design a scheme to
generate a vacuum induced phase considering the inter-
action of the particle with two modes of the field in the
vacuum state which are mixed adiabatically to generate
the phase. This phase has a very interesting physical
interpretation which we discuss in this Letter. Using a
scheme designed to detect the Berry phase of the joint
state of a harmonic oscillator and a two level system using
an ion trap [12], it is possible to measure this vacuum
induced phase.

In the semiclassical scenario we consider a spin 1/2
particle, or more generally, a two level system, coupled to
a external classical oscillating field with frequency � not
far from the Bohr frequency ! of the two level system.
In this case, it is convenient to work in a frame of
reference rotating with frequency �. The two level sys-
tem is described in terms of Pauli operators �z, �� �
��x � i�y�=2 and its dynamics is characterized by the
following Hamiltonian:

H �
�

2
�z � 
����e�i � ���ei�; (1)

where � � !� � is the detuning, 
 is the coupling
constant between the system and the field, and � repre-
sents the amplitude of the oscillating field. This
Hamiltonian can be expressed in terms of an effective
vector field B � �
� cos; 
� sin;�=2� as H � B��
where � � ��x; �y; �z�. When the state of the two level
system is initially prepared in an eigenstate of the
Hamiltonian and the direction of the effective field B is
changed adiabatically, the state of the system will follow
the field and after a complete cycle it will acquire a
geometric phase equal to � � � 1

2	. The � sign depends
on whether the state was initially aligned or against the
direction of the field, and 	 is the solid angle subtended
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In the simplest case, where the detuning and strength of
the coupling are fixed and the phase  varies from 0 to
2�, the eigenstates of the particle describe a loop C in the
bloch sphere and Berry’s adiabatic geometric phase is (up
to a � sign)

� � ��1� cos��; (2)

where cos� � �=
���������������������������
�2 � 4��
�2

p
.

We will now calculate the phase taking into account
that a more rigorous description of the oscillating field
that drives the spin-1/2 particle involves a quantum field.
This means that the field cannot be considered anymore
an external variable, it is part of the system itself, and its
state can be manipulated by varying the parameters of
the Hamiltonian. In the initial situation we consider the
Hamiltonian of a spin-1/2 particle interacting with a
single quantized mode of the field in the rotating wave
approximation [13]

Hq
o � �aya�

!
2
�z � 
���a� ��ay�; (3)

where � is the frequency of the field described in terms of
the creation and annihilation operators a and ay, ! is the
transition frequency between the eigenstates of the par-
ticle, and 
 is the coupling constant. It can be seen by
replacing the operators a and ay by the classical ampli-
tude � that this Hamiltonian corresponds to the semi-
classical Hamiltonian (1) before the rotation involving 
has been applied. In the standard semiclassical experi-
ment previously introduced, the variation of the state was
induced by an adiabatic change of the phase of classical
field. In the fully quantized context we need a procedure
capable of generating an analogous phase change in the
state of the field. To this end we introduce the phase shift
operator U�� � exp��iaya� that, applied adiabati-
cally to the Hamiltonian of the system, is capable of
changing the state of the field. Changing  slowly from
0 to 2� the Berry phase generated is calculated as fol-
lows:

�q
� � i

Z
c
d

�
��

n

�������U��y
d
d

U��

���������
n

�
; (4)

where j��
n i are the eigenstates of the Hamiltonian (3).

Substituting the expression of j��
n i leads to

�q
� � ��1� cos�n� � 2�n; (5)

�q
� � ���1� cos�n� � 2��n� 1�; (6)

with cos�n � �=
�����������������������������������
�2 � 4
2�n� 1�

p
. It is important to

note that for n � 0 the phase is different from zero, which
means that the vacuum field introduces a correction in
Berry’s phase. Moreover, if we consider a coherent state
with large amplitude we recover the semiclassical result
( cos�n 
 cos�). We now have a general expression for the
Berry phase considering the quantum nature of light.
This expression is relevant when systems are driven by
fields with few photons and Berry’s result is recovered
when the photon number grows.
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In order to study the physical meaning of the second
term we need a nontrivial contribution that is different
from an integer multiple of 2�. Therefore, we now de-
scribe a scheme were the particle interacts with two
modes of the field. Consider the initial Hamiltonian

H2q
o � �aya� �byb�

�
2
�z � 
���a� ��a

y�; (7)

describing a spin-1/2 particle interacting with one mode
of the field with creation and annihilation operators a and
ay through a Jaynes-Cummings resonant interaction with
coupling constant 
 and a second mode of the field with
creation and annihilation operators b and by and fre-
quency � which initially does not interact with the par-
ticle nor the first mode of the field. The eigenstates of this
Hamiltonian are

j��
n;n0 i �

1���
2

p �je; ni � jg; n� 1i�jn0i: (8)

The state vector is a product state of the states jn0i of the
field with modes b and by and the Jaynes-Cummings
eigenstates of joint state of the field with modes a and
ay and the particle. Now we are allowed to exploit the
second mode to perform a more general class of trans-
formations, using the mode b as an ‘‘ancilla.’’ Instead of
changing the phase of the field and detuning between the
two level system and the field, we consider the possibility
of linearly mixing the two modes in a cyclic way, without
any direct action on the degrees of freedom of the two
level system. Before considering this transformation let
us introduce some notation. The operation of linear mix-
ing of two modes can be represented in a suitable way
employing the Schwinger angular momentum [SU�2�]
operators

Jz �
1

2
�aya� byb�; Jx �

1

2
�ayb� aby�;

Jy �
1

2i
�ayb� aby�:

The physical meaning of this operator can be easily
understood if we look at the two modes as two different
polarizations of the same spatial mode. The Schwinger
operators can then be interpreted as the generators of the
polarization transformations, or in more abstract terms
they determine rotations in the Poincaré’s sphere S2 
SU�2�=U�1�. In order to generate a Berry phase we per-
form a cyclic loop in the Poincaré’s sphere, changing
adiabatically the Hamiltonian by means of the unitary
transformation:

U��;� � exp��iJz� exp��i�Jy�; (9)

where � and  are slowly varying parameters. The trans-
formed Hamiltonian is

H2q �UHoU
y

� ���z=2� aya� byb� � 
�cos�=2��ae
�i=2

� sin�=2��bei=2 � H:c:�: (10)
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This Hamiltonian describes spin-1/2 particle interacting
simultaneously with two modes of the field through a
Jaynes-Cummings Hamiltonian where the mode phases
and the coupling between spin-1/2 particle and each of
the modes are adiabatically varied through the parame-
ters � and . Both eigenstates (8) acquire the phase

�n;n0 �
1

2
	�n� n0 � 1=2�; (11)

where 	 is the solid angle subtended by the cyclic loop in
the Poincaré’s sphere. The phase dependence on the pho-
ton number is not trivial and can be measured by using an
interference procedure between any of the eigenstate
j��

n;n0 i and the ground state jg; 0; 0i, which is the only
state that acquires no geometric phase. The most remark-
able case is obtained with the initial state je; 0; 0i �
1��
2

p �j��
0;0i � j��

0;0i�. Indeed, even though the field is in a
vacuum state the geometric operations performed on the
degrees of freedom of the field determine a Berry’s phase

�zero �
	

4
: (12)

Clearly, this result has no semiclassical correspondence,
on account of the absence of a classical interpretation of a
vacuum state. However, it is worth investigating the
physical meaning of Eq. (11). An interpretation of the
first part of Eq. (11), namely 	�n� n0�=2, can be pro-
vided in terms of a polarized field not interacting with the
two level system, subjected to a rotation of its polariza-
tion [2,14]. Indeed, this term has a classical origin that
can be understood as follows. Suppose a beam of classical
polarized light traverses an anisotropic dielectric such
that its polarization slowly rotates and performs a closed
loop in the Poincaré’s sphere due to the variation of
dielectric properties along the direction of propagation.
According to Maxwell’s equations, if the variation in the
medium is slow enough, the beam of light acquires a
geometric phase. Therefore, if � and � are the complex
amplitudes of the two eigenmodes of the dielectric, under
the cyclic rotation in the Poincaré’s sphere they become
�ei	=2 and �e�i	=2, respectively. If the same experiment
is analyzed in a context where the electromagnetic field is
quantized, we expect to see the same effect. If we quan-
tize the two modes by substituting the complex amplitude
� and � with the corresponding annihilation operators a
and b, the effect of the geometric evolution on the Fock
states of the field is

jn; n0i ! ei�n�n0�	=2jn; n0i: (13)

Clearly, if we consider coherent states of the field the
classical result is recovered: j�ij�i ! j�ei	ij�e�i	i.
Therefore, if we look at the two modes a and b in
Eq. (7) as two different polarizations of the same spatial
mode, 	�n� n0�=2 is the geometric phase corresponding
to the polarization rotation of an electromagnetic field not
interacting with the two level system. Then the question
is: what is the physical origin of the term (12)? Clearly the
interaction with the two level system is responsible for the
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appearance of this term. To have a picture of how this
term comes into play, we can consider the semiclassical
limit of the two level system interacting with the field.
Suppose that modes a and b of the field initially are in a
coherent state j�i and j�i, respectively, and the particle is
in the linear combination �jei � jgi�. Now, the state is
adiabatically transformed by means of the operator (9)
whose parameter are slowly varied along a close loop in
the parameter space �;. In the limit of large amplitude
coherent state j�i (j�j � 1) the state is transformed as

�jei � jgi�j�;�i

! �ei	=4jei � e�i	=4jgi�jei	=2�; e�i	=2�i: (14)

After the adiabatic evolution, the amplitudes � and � of
the coherent states acquire a phase 	=2 and �	=2,
respectively. According to the result (13) obtained in
the case of a field noninteracting with the two level
system, this phase is associated with the polarization
rotation, and originates from the term 	�n� n0�=2 of
Eq. (11). Since in the large amplitude coherent state the
two level system is approximately not entangled with the
field, the term (12) appears in the last equation as a phase
associable to the state of the two level system only. Under
this condition exist a possible explanation of the phase
(12) in terms of a semiclassical model. Consider the
semiclassical Hamiltonian (1) in the resonant case
(� � 0). Suppose to rotate the polarization direction of
the classical field. Coherently with the previous notation
we describe this polarization with the two dimensional
complex unit vector

���;� �

�
ei=2 cos�=2
e�i=2 sin�=2

�
� A

�
�
�

�
; (15)

where A � 1=
������������������������
j�j2 � j�j2

p
. During the rotation the field

acquires a geometric phase ��s� that depends on the path s
followed by the vector � on the Poincaré’s sphere. Since
this phase is not integrable, the state of the field cannot be
specified completely in terms of the parameters � and 
only, but it needs to be expressed also as a function of
the path s. Then, in a more complete description, the
state of polarization has to be expressed as ~����;� �
ei��s����;�. Since the field is a parameter of the semi-
classical Hamiltonian, in the expression (1) the field must
be considered together with its phase factor ei��s�.
Therefore, the Hamiltonian is no longer a function of �
and  only, but depends, through the field, also on its
previous ‘‘history.’’ Taking into account this further
phase in the expression (1) leads to

H � 
A��e
i=2 cos�=2ei��s� � H:c: (16)

This means that the eigenstates of (16) are functions also
of the geometric phase ��s�. The presence of the geomet-
ric phase in the Hamiltonian becomes nontrivial when the
field performs a closed loop in its parameter phase. At the
end of this loop the states have experienced a global
transformation due to the geometric phase accumulated
by the field in its evolution. For example, starting from
220404-3
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parameters � � 0 and  � 0 after a closed loop the
Hamiltonian transforms into H � 
A���e

i	=2 � H:c:�
and accordingly, its eigenstates transform as jei � jgi !
ei	=4jei � e�i	=4jgi, which is the result expected from
the quantum description [see (14)].

On the other hand, the classical picture fails to explain
the phase 	=4 when the system involve a field with low
number of photons. The entanglement in the eigenstates
(8) cannot be neglected in this case, and the expression
(12) cannot be interpreted as a phase of the two level
system only. A remarkable explanation of the origin of
the phase 	=4 can be provided in terms of the vacuum
fluctuation of the field. Because of the entanglement of
the eigenstates (8) the field is not in a pure state, and must
be considered as an incoherent combination of jn; n0i and
jn� 1; n0i. It is still possible to provide an operationally
well defined generalization of geometric phase when a
system is in a mixed state. According to the definition
introduced by Sjöqvist et al. [15], the geometrical phase
for a mixed state ! �

P
k wkjkihkj evolving under a

closed, adiabatic transformation U can be expressed in
terms of an average connection form

ei� �
X
k

wke
i�k ; (17)

where �k is Berry’s phase related to the eigenstate jki.
Applying this concept to the state of the field ! �
1=2�jnihnj � jn� 1ihn� 1j� � jn0ihn0j, evolving under
the transformation (9) leads to the geometric phase given
by the expression (11). In the case of n � n0 � 0 the phase
	=4 is obtained. This phase is therefore determined
by the vacuum photon fluctuation due to the interaction
with the two level system. The average number of photons
in the the state of the field determines the noninteger
number ‘‘n� n0 � 1=2’’ multiplying the classic geomet-
ric phase 	=2 in the expression (11).

The Berry phase is usually described as the phase
acquired by the state of a system when an adiabatic and
cyclic change in the state is generated by means of vari-
ations on external classical fields acting on a quantum
system. However, in physics there are many striking
effects of field quantization. We have investigated the
canonical example of the Berry phase giving a rigorous
description of the field.We considered the quantum nature
of the field in the geometric evolution for a spin-1/2
particle rotating in a cyclic fashion by means of a slowly
varying magnetic field and found a general expression for
the phase which reduces to the standard result in the
semiclassical limit and presents vacuum induced effects.
In addition, we have shown how to generate a vacuum
induced phase in the state of a spin-1/2 particle using the
most general rotation in the space of the system, which
corresponds to a two mode displacement operator that
mixes the modes of the field. This result opens up a new
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arena to the study of the consequences of field quantiza-
tion in the geometric evolution of states. We are inves-
tigating possible applications of this effect and its
connections to other quantum effects in different systems.
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