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Beliaev Damping of Quasiparticles in a Bose-Einstein Condensate
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We report a measurement of the suppression of collisions of quasiparticles with ground state atoms
within a Bose-Einstein condensate at low momentum. These collisions correspond to Beliaev damping
of the excitations, in the previously unexplored regime of the continuous quasiparticle energy spectrum.
We use a hydrodynamic simulation of the expansion dynamics, with the Beliaev damping cross section,
in order to confirm the assumptions of our analysis.
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involved. Conservation of energy and momentum re-
quires that �EB � EBq � EB �, where an initial excitation

number k and create two in its stead. Calculating the
matrix element prefactor of this term in the atomic
In a Bose-Einstein condensate (BEC) collisions be-
tween indistinguishable excitations (quasiparticles) and
the condensate are an important channel for the dissipa-
tion of these excitations. Understanding the decay of
excitations gives insight into higher order terms of the
interaction Hamiltonian beyond mean field, relevant even
in the zero-temperature limit [1]. In addition, these cou-
pling terms are predicted to generate squeezing and en-
tanglement of quasiparticle excitations [2], influencing
future works on coherent outcoupling of matter waves
(atom laser) from BEC [3].

The case of identical particle collisions has been
extensively studied using many-body theory, starting
with [1]. Recently, these results have been applied to
BEC explicitly [4–7]. In this Letter we present a mea-
surement of collisions between quasiparticles and the
BEC, at velocities approaching the superfluid critical
velocity vc. We find a suppression of the collision cross
section between the quasiparticles and the BEC in agree-
ment with the theory of Beliaev damping.

The Landau criterion [8] states that vc cannot be
greater than EBk = �hk, for any excitation EBk in the spectrum
with wave number k. This criterion follows from consid-
ering the collision between an impurity (e.g., distinguish-
able excitation) and the superfluid, under the constraints
of momentum and energy conservation. The impurities
follow the dispersion relation E0

k � k2. The wave number
k is in units of ��1 �

������������
8	na

p
, the inverse healing length

of the condensate, with a the s-wave scattering length [9]
and n the density. We express energy in units of 
 � gn,
the chemical potential of the BEC, where g is 4	 �h2a=m,
and m is the mass of the BEC atoms. The recently mea-
sured [10] Bogoliubov dispersion relation [11] of the
condensate is given by EBq �

�������������������
q4 � 2q2

p
. Consequently,

the BEC has a superfluid critical velocity vc �
�����������

=m

p
,

below which collisions between impurities and the con-
densate are completely suppressed.

In the case of quasiparticle collisions only the
Bogoliubov dispersion relation is relevant, and the
Landau criterion does not apply, since no impurities are
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of wave number k collides with the BEC creating two
excitations with wave vectors q and k� q. We solve this
condition and find the angle � between the initial direc-
tion k and the scattered direction q to be [see Fig. 1(a)]

cos��� � �2kq��1�k2 � q2 � 1�
���������������������������������
1� �EBk � EBq �

2
q

�:

(1)

Equation (1) has solutions for any finite k; therefore,
there is no longer any well defined critical velocity
at which collisions are completely suppressed. However,
not all angles are allowed. At a given k we find
that the maximal allowed angle is cos��max� �����������������������
�k2 � 2�=2

p
=�k2 � 1�. At the limit of small k, this angle

approaches zero, and collisions are allowed only for
q parallel to k.

The collision rate between a quasiparticle with wave
number k and the BEC is proportional to jAq;kj2, where
Aq;k is the q-dependent, momentum conserving, scatter-
ing matrix element, which includes suppression or en-
hancement of the collision process due to many-body
effects [12].

The appropriate suppression term jAq;kj2 for quasipar-
ticles has been calculated [4,5]. In this work we expect
mainly Beliaev processes which involve creation of lower
energy excitations. The Landau damping rate is expected
to be an order of magnitude slower than the observed
Beliaev collision process, since the experimental regime
is at sufficiently low temperature to suppress this ther-
mally activated damping process [5].

We start with the atomic interaction Hamiltonian
H0 � g

2V

P
j;l;m;n a

y
j a

y
l aman�j�l�m�n, where V is the vol-

ume of the BEC and ayi and ai are, respectively, the
atomic creation and annihilation operators at wave num-
ber i. We approximate ay0 � a0 �

������
N0

p
, with N0 the num-

ber of atoms in the condensate. We take the Bogoliubov
transform ayp � �upb

y
p � vpb�p�, with up and vp the

appropriate quasiparticle amplitudes, which were re-
cently measured [13]. We are interested in terms of the
form bkb

y
k�qb

y
q , which remove a quasiparticle of wave
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interaction Hamiltonian, we arrive at Aq;k �
1
2 �Sq �

3SqSkSk�q � Sk�q � Sk�=
���������������������
SkSqSk�q

p
, where Sq is the

static structure factor of the BEC (at wave number q)
[14]. This result can be viewed as the explicit zero-
temperature limit of more general calculations [7].

Applying Eq. (1) and jAq;kj2 to the Fermi golden rule
integrated over all allowed scattering modes, and using
the Feynman relation [15], Sq � E0

q=E
B
q , we arrive at the

rate of excitation-condensate collisions

n Bk vk � 8	na2vk



1

2k2

Z k

0
dqqjAq;kj

2
EBk � EBq���������������������������������

1� �EBk � EBq �
2

q ; (2)

where vk � �hk��1=m is the free particle velocity of the
excitations. The effective cross section  Bk for the quasi-
particles is shown in Fig. 1(b). For large k,  Bk approaches
8	a2 (compared to 4	a2 for impurities, due to the boson
quantum mechanical exchange term). In Eq. (2), for
small k, we verify that the scattering rate indeed scales
as k5, which is the classic result [1,5]. In particular, it
FIG. 1. (a) The allowed momentum manifold for quasipar-
ticle collisions due to conservation of energy and momentum.
The qk and q? axes correspond to the parallel and orthogonal
components to k of the scattered momentum, respectively,
where tan��� � q?=qk. The manifolds represent the experimen-
tal k’s 4.09 (outermost), 2.63, 1.73, and 1.06 (innermost). The
momentum is in units of the inverse healing length, ��1 �������������
8	na

p
. (b) Cross section for collisions between quasiparticles

and a homogeneous condensate, taken from Eq. (2). The cross
section is in units of the free particle scattering cross section
for identical particles 8	a2. Vc marks the superfluid critical
velocity.
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remains finite even for vk < vc, in contrast with impurity
scattering.

In [16], the identical particle collision cross section for
large k was measured to be 2:1��0:3� 
 4	a2. Scattering
rates in four-wave mixing experiments in BEC [17] were
also shown to agree with the high-k limit of Eq. (2) [18].

In the opposite regime of extremely low wave number,
where the energy levels are discrete, Beliaev damping
was observed for the scissors mode of a BEC [19]. The
discrete energy levels were tuned so that Beliaev damping
of the initial mode to exactly one mode of half the energy
was achieved. Equation (2) did not apply, since there was
no need to integrate over various scattering modes.

Our experimental apparatus is described in [10].
Briefly, a nearly pure ( > 95%) BEC of 105 87Rb atoms
in the jF;mfi � j2; 2i ground state is formed in a
quadrupole-Ioffe-configuration-type magnetic trap [20].
The trap is cylindrically symmetric, with radial (r̂r) and
axial (ẑz) trapping frequencies of 2	
 220 Hz and 2	

25 Hz, respectively. Thus � � 0:24 
m via averaging in
the local density approximation (LDA) [10].

We excite quasiparticles at a well defined wave number
using two-photon Bragg transitions [21]. The two Bragg
beams are detuned 6.5 GHz from the 5S1=2; F � 2 !
5P3=2; F

0 � 3 transition. The frequency difference �!
between the two lasers is controlled via two acousto-
optical modulators. Bragg pulses of 1 msec duration are
applied to the condensate. The angle between the beams is
varied to produce excitations of various k along the z
axis, thus preserving the cylindrical symmetry of the
unperturbed BEC. The beam intensities are chosen to
excite no more than 20% of the total number of atoms
in the condensate.

After the Bragg pulse, the magnetic trap is rapidly
turned off, and after a short acceleration period the
interaction energy between the atoms is converted into
ballistic kinetic energy [22]. After 38 msec of time-of-
flight (TOF) expansion the atomic cloud is imaged by an
on-resonance absorption beam, perpendicular to the z
axis. Figure 2(a) shows the resulting absorption image
for k � 2:63, with the large cloud at the origin corre-
sponding to the BEC. A halo of scattered atoms is visible
between the BEC and the cloud of unscattered outcoupled
excitations. No excitations with energy greater than that
of the unscattered excitations are observed, confirming
our low estimate of the Landau damping rate. Figure 2(b)
shows the absorption image for k � 1:06. For this k value
the distinction between scattered and unscattered excita-
tions is not clear in the image, since both types of ex-
citations occupy the same region in space.

At a given k the number of excitations is varied by
scanning �! around the resonance frequency !Bk . The
number of excitations that was formed initially ni is
measured by determining the total momentum (in units
of the recoil momentum �hk��1) contained in the out-
coupled region outside the unperturbed BEC. This region
220401-2



FIG. 2. Absorption TOF images of excited Bose-Einstein
condensates. (a) Absorption image for k � 2:63, with the large
cloud at the origin corresponding to the unperturbed BEC. A
clear halo of scattered atoms is visible between the BEC and the
cloud of unscattered outcoupled excitations. (b) Absorption
image for k � 1:06. For this value of k the distinction between
scattered and unscattered excitations is not clear, since both
types of excitations occupy the same region in space.
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includes all the scattered and unscattered excitations, in
the direction of k. Thermal effects are removed by sub-
tracting the result of an identical analysis in the direction
opposite to k. The results are shown in Fig. 3(a).

In order to quantify the amount of collisions, despite
the lack of separation between scattered and unscattered
excitations, we take the ratio between ni and the counted
number of atoms nf, in the same region. The resulting
ni=nf, as a function of �!, are shown in Fig. 3(b). The
ratio is seen to be independent of the number of excita-
tions and appears to be an intrinsic property of a single
excitation. Each collision between an excitation and the
condensate creates an additional excitation that is counted
in the outcoupled region, increasing nf, while the mo-
mentum (ni) in this interaction is conserved. Thus the
ratio, ni=nf, is a good quantifier of the amount of the
collisions, even at low k [23]. Bosonic amplification of the
collision rate [12], which would appear as minima in
Fig. 3(b), is not observed.

At a given k we define the overall probability for an
excitation to undergo the first collision pk. If we ignore
secondary collisions the result is ni=nf � 1=�1� pk�,
since each collision outcouples, after TOF, an additional
FIG. 3. Quantifying the amount of collisions measured for
k � 2:63. (a) Measured momentum of the outcoupled atoms vs
�!. The momentum is in units of the recoil momentum and is
normalized by the total number of atoms. The peaks represent a
spectroscopic measurement of the resonance excitation energy
at this k. (b) The measured ratio between ni and nf (both
defined in the text). Every collision outcouples more atoms,
increasing nf but leaving ni almost unchanged.
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particle [24]. Using this relation we can infer pk for the
various measured k’s.

We expect the scattering probability pk to be equal to
~nn Bk vkteff , where teff is the effective interaction time of
the excitation with the condensate and ~nn is the average
density.

We assume teff to be k independent, divide pk by vk,
and arrive at a value that is proportional to the scattering
cross section (since the ~nn is constant for all k). These
assumptions will be tested below, but must be valid for
sufficiently low k, for which the TOF expansion lowers the
density rapidly, turning off collisions before the excita-
tions move significantly.

The ratio, pk=�~nnvkteff�, is shown in Fig. 4 (�) and is
seen to agree with the theoretical suppression (solid line)
calculated as an LDA average [14] of Eq. (2) [25]. Since
teff is not known, absolute calibration is not possible.
Therefore, the results are shown with arbitrary units.

In order to verify the validity of the simplifying as-
sumptions, 3D simulations are performed, using the
hydrodynamic Gross-Pitaevskii equations [26]. The sim-
ulations [22] include the TOF dynamics. The expansion of
the main BEC cloud is taken from expressions in [27],
computed for an elongated condensate by the hydrody-
namic equations. The excitations travel within the time
varying mean-field potential created by the expanding
unperturbed condensate. The excitations collide with the
expanding condensate with the correct local scattering
cross section, including the angular dependence, taken
from Eq. (2). The collisional process involves interaction
terms beyond mean field and therefore must be added
explicitly to the simulation. The resulting distribution of
FIG. 4. Suppression of identical particle collisions. Scattering
cross section is in arbitrary units. The momentum is in units of
the inverse healing length after LDA averaging, � � 0:24 
m.
The error bars represent the statistical uncertainty of the
experimental data. The theoretical curve (solid line) is an
LDA average of Eq. (2) [25]. The assumptions of our analysis
are tested using hydrodynamic simulations and are found to
agree with Beliaev damping theory in the experimental regime
(dashed line).

220401-3



VOLUME 89, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 25 NOVEMBER 2002
simulated outcoupled atoms is analyzed by the same
method as the experimental data.

We plot the simulated pk=vk in Fig. 4 (dashed line, in
the same units as theory). The simulation and Beliaev
damping theory agree in the regime of experimentation,
to better than 4%, indicating a window of validity for the
assumptions used in analyzing the experimental data. At
large k (above k � 4:09), teff is made shorter by the rapid
transit of the condensate by the excitations. At low k (less
than k � 1:06) many of the collisional products remain
inside the condensate volume and are not counted, pre-
venting analysis in this regime.

The arbitrary unit of suppression used in Fig. 4 was set
at k � 2:63. The total collision probabilities pk obtained
by comparing the experimental data to the hydrodynam-
ical simulations were higher by a k-independent overall
factor of 2:36� 0:08, which is not understood. This factor
may be caused by various inaccuracies in the TOF
parameters of the simulation. However, the trend in the
experimental analysis is robust and does not depend on
absolute calibration.

We also set the collision rate artificially to zero in the
simulation and find ni=nf to be unity within 2%, for all k.
This implies that there are no significant other mean-field
repulsion effects along the z axis [22], confirming our
assumption of momentum conservation.

In conclusion, we report a measurement of the suppres-
sion of the collision cross section for identical particles
within a Bose-Einstein condensate. We find the suppres-
sions in our experiment in agreement with a calculation of
Beliaev damping rates, within an overall factor. We use a
hydrodynamic simulation of the expansion dynamics, in
order to verify our analysis of the experiment. This rep-
resents the first measurement of this effect in the quasi-
particle continuous spectrum regime.

This work was supported in part by the Israel Science
Foundation.
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