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Comment on ‘‘Low-Density Spin Susceptibility and
Effective Mass of Mobile Electrons in Si Inversion
Layers’’

In a recent Letter [1], the effective g factor and the
effective mass, m, have been studied by Pudalov et al. in a
dilute 2D electron system in silicon. By analyzing
Shubnikov–de Haas oscillations in superimposed paral-
lel and perpendicular magnetic fields, the authors repro-
duce the strong increase of gm with decreasing electron
density previously reported in Ref. [2]. However, they
contrast their data with the data obtained by our group
[3] and claim that the spin susceptibility (or the product
gm) ‘‘increases gradually with decreasing density,’’
which ‘‘does not support the occurrence of spontaneous
spin polarization and divergence of gm at ns � nc’’ (here
ns is the electron density and nc is the critical density for
the metal-insulator transition, MIT). The purpose of this
Comment is to show that all available experimental data,
including those of Pudalov et al., are consistent with each
other and are in favor of a spontaneous spin polarization
in this 2D system and a divergence of gm at a finite
electron density.

Spin polarization and spin susceptibility were recently
studied by measuring the (parallel) magnetic field Bc,
required to fully polarize the electrons’ spins, using scal-
ing of magnetoresistance [3] and magnetoconductivity
[4]. To compare the data of the above two groups with
the newer data of Pudalov et al. [1], in Fig. 1 we plot all
three sets of data (two sets in the inset for better visibil-
ity). To convert gm from Ref. [1] into Bc, we use the
condition for the full spin polarization: g�BBc=2 �
	 �h2ns=2m, where �B is the Bohr magneton. (The factor
of 2 on the right side of the equation reflects the valley
degeneracy.) The agreement between all three sets of data
is remarkable, especially if one takes into account that
different groups used different methods, different
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FIG. 1. Bc�ns� calculated using the data from Refs. [1,3,4].
The dashed and dotted straight lines are fits to the data from
Refs. [1,3], respectively.
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samples, and different field/spin-polarization ranges. Bc
is a linear function of ns and extrapolates to zero at a finite
electron density which we will designate n�. The linear fit
of the data from Ref. [1] yields n� � 8� 1010 cm�2,
which is identical with ours suggesting that n� is sample
independent.

Contrary to the claim made in Ref. [1] of a gradual
increase of � with decreasing ns, the linear dependence of
Bc / ns=gm (Fig. 1) points to the critical behavior of the
spin susceptibility: � / ns=�ns � n��. The divergence of
� should occur at the sample-independent electron den-
sity n�, which in the samples studied in Ref. [3] coincides
with the critical density nc for the MIT indicated by the
arrow. In more disordered samples, however, nc may be
noticeably higher than n�. This is the case for the samples
from Ref. [1] with nc � 1� 1011 cm�2 being well
above the expected ferromagnetic transition point n� �
8� 1010 cm�2. This explains why no divergence of gm is
seen by Pudalov et al. at electron densities down to nc in
their samples. Note that even in the least disordered
samples gm is still expected to be finite near n�, as it
normally occurs for any ferromagnetic transition due to
nonzero temperature, inhomogeneous broadening, etc.

Of course, for the spin susceptibility to diverge at
ns � n�, the extrapolation of Bc�ns� to zero must be valid.
To verify its validity, accurate data at lower densities,
lower temperatures, and on much less disordered samples
are needed. We emphasize that, in contrast to their claim,
the method used by Pudalov et al. [1] certainly cannot be
applied ‘‘down to and across the 2D MIT’’ because at
ns & 1011 cm�2 (i) the amplitude of oscillations is too
large (and even diverges as T ! 0) [5], which is incon-
sistent with the Lifshitz-Kosevich formula they use, and
(ii) there are too few oscillations [5] to study the beating
pattern. We also note that the Lifshitz-Kosevich formula
was deduced for the case of weak electron-electron in-
teractions, and its application to strongly correlated sys-
tem is not justified.
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