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Based on a highly self-consistent theory maintaining the exact functional relations between the self-
energy and the vertex part, we evaluate the dynamical structure factor S�q; !� of the electron liquid. We
find striking deviations from S�q; !� in the random-phase approximation (RPA) for jqj > pF; besides a
broad peak in the one-pair excitation region as seen in the RPA, a clear shoulder appears along a
steepened slope at low ! due to electron-hole multiple scattering, and a flattened structure follows due
to inseparable interference between one-pair and multipair excitations. Our result agrees with experi-
ments on Al on the whole. The remaining discrepancy is ascribed to the band-structure-induced effect.
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ing all terms derivable from the exact ��G� when the
self-consistency is achieved. In a numerical algorithm,

Matsubara frequency i!n 
 �iT�2n	 1� with an in-
teger n:
The electron liquid, an assembly of N electrons em-
bedded in a uniform positive background, has been
studied to clarify the nature of electron correlation in
metals, putting aside the influence of the periodic
ion potential. This simplified model poses a tough prob-
lem, but after the struggles lasting longer than half a
century [1], accurate knowledge of its almost all static
properties is now acquired by a number of sophisticated
methods including quantum Monte Carlo (QMC) simu-
lations [2,3] over the entire region of metallic densi-
ties 1:88 < rs < 5:6, where rs is the conventional density
parameter.

As for dynamical properties, on the other hand, our
knowledge is still not enough in spite of all previous
efforts [4–8] to go beyond the random-phase approxima-
tion (RPA) in an attempt to explain the double-peak
structure in the dynamical structure factor S�q; !� ob-
served in light metals such as Al [9–11]. Among approxi-
mation schemes, the Baym-Kadanoff conserving one [12]
formulated in terms of the full Green’s function G is most
suitable for the evaluation of S�q; !�. Accuracy of the
result depends critically on the choice of the energy func-
tional ��G�, but the result will never become exact, since
no algorithm is known to give the exact ��G�.

One of the authors (Y.T.) developed a conceptually
different scheme to obtain the exact S�q; !� [13]; instead
of pursuing ��G�, we pay attention to the exact functional
relations between the self-energy � and the vertex func-
tion �, obeying the microscopic conservation law. In
particular, � is determined by the Bethe-Salpeter equa-
tion with an irreducible electron-hole interaction given by
the functional derivative, ��=�G. Starting from an arbi-
trary input, we iteratively revise both � and � simulta-
neously towards self-consistency through the relations,
whereby the number of terms representing � generated in
this iterative process rapidly increases, eventually cover-
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however, the functional differentiation ��=�G is not
feasible. Thus, we need to invent an alternative scheme
to revise � on a computer in an accurate and efficient way.

Recently, a physically motivated and accurate enough
prescription is given for � [14]. In this Letter, our result of
S�q; !� is presented, which is most accurate among all
existing results. Striking differences can be seen between
our result and the RPA one, particularly for jqj larger
than pF the Fermi momentum. Our result describes in-
separable coupling between one-pair and multipair exci-
tations in the one-pair excitation region, attractive
electron-hole multiple scattering (excitonic effect) on
the low-! side of the one-pair region, and extra contri-
butions from multipair excitations outside of it. By com-
paring it with the experimental S�q; !� on Al, we
conclude that Al can be regarded as the electron liquid
for ! smaller than about the Fermi energy EF�� 11 eV�.
For larger !, we must allow for the strong tight-binding
nature of unoccupied 3d and 4f bands in analyzing
experiments.

At temperature T, S�q; !� is written as [15]

S�q; !� � �
1

�
1

1 � e�!=T
ImQc�q; !�; (1)

where Qc�q; !� is the density-density correlation func-
tion, given in terms of ��q; !� the polarization function
as Qc�q; !� � ���q; !�=�1 	 V�q���q; !�� with the
Coulomb interaction V�q� � 4�e2=q2. We shall obtain
��q; !� by analytic continuation of ��q; i!l� onto the
real ! axis, where !l is a boson Matsubara frequency,
expressed as i!l 
 2�iTl with an integer l.

In order to determine ��q� with q 
 �q; i!l�, we need
to implement the following self-consistent loop to relate
��q� with ��p� the electron self-energy, where p
is a combined notation of momentum p and fermion
 2002 The American Physical Society 216402-1
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FIG. 1 (color online). Dynamical structure factor of the elec-
tron liquid at rs � 5. In the inset, the obtained static density-
density correlation function is compared with that in the
QMC [3]. The value indicated by !p is the plasmon energy
at q � 0.
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��p� � � T
X

!l

X

q

V�q�G�p	 q���p; p	 q�="�q�;

(2)

where G�p� is given by G�p��1 � G�0��p��1 � ��p� with
G�0��p��1 � i!n � �p using �p the bare one-electron dis-
persion, "�q� is the dielectric function, defined by "�q� 

1 	 V�q���q� with ��q�, calculated as

��q� � �T
X

!n

X

p�

G�p�G�p	 q���p; p	 q�: (3)

The crux in these equations is ��p; p	 q� for
which an effective scheme is invented [14] to
give ��p; p	 q� as the product of two factors, �LFC�q� 

1 � fhom

xc �q���q� and �WI�p; p	 q� 
 �G�p��1�
G�p	 q��1�=�G�0��p��1 �G�0��p	 q��1�, where fhom

xc �q�
is the frequency-dependent exchange-correlation local-
field correction appearing in the time-dependent density
functional theory [16]. Irrespective of the choice of
fhom

xc �q�, �WI enforces the Ward identity (WI). Using � �
�LFC�WI, we can implement the self-consistent iteration
loop, starting from the noninteracting solution and end-
ing the loop if the relative difference in ��p� between
input and output becomes less than 10�5 for any p.

Calculations are done for the electron liquid with the
parabolic dispersion �p � p2=2m for 1 � rs � 5. We have
set T at 0:01EF which is low enough to obtain Qc�q; !� or
S�q; !� at T � 0 by analytic continuation of ��q; i!l�
onto the real ! axis. In the inset of Fig. 1, we have
compared our result of Qc�q; 0� with the virtually exact
one in the QMC [3], showing that our result of ��q; 0�
calculated through Eq. (3), is very accurate for any q.
This assures the overall accuracy of the summed quanti-
ties in Eq. (3), G and �, eventually confirming the cor-
rectness and good self-consistency of our theory.

Throughout the metallic-density region, qualitative
features of S�q; !� remain the same; a typical example
at rs � 5 is given in Fig. 1. For jqj< qc ( � 0:90pF),
S�q; !� is characterized by a single peak at ! � !p�q�,
the plasmon. Both its dispersion !p�q� and its cutoff
momentum qc are slightly lower than those of the RPA;
qc in the RPA is 1:1pF. Even if jqj is not very close to qc,
this peak has a rather broad damping width in contrast
with an undamped peak of the RPA. This damping comes
from coupling between the plasmon and multipair exci-
tations. As seen in Fig. 2(d), the plasmon is no longer well
defined beyond qc because of the Landau damping inside
the one-pair excitation region. Incidentally, it is a rather
astonishing fact that the bulk of S�q; !� occupies almost
the same region as the noninteracting one-pair region,
though a considerable amount of damping widths asso-
ciate with the quasiparticles; minor contributions from
multipair excitations are seen outside the one-pair region.
Here we note that this fact, though being physically
natural, cannot be obtained without �WI.
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A novel structure is found in S�q; !� for jqj > qc or pF;
besides a broad peak b located at almost the same posi-
tion in the RPA, there appears a clear shoulder a accom-
panied by a steepened slope of the linear term in S�q; !�
for small !. The peak b, being identified as ‘‘the center of
gravity’’ of one-pair excitations, is transformed continu-
ously into the plasmon peak as jqj decreases. The shoulder
a is well developed particularly for 1:4 � jqj=pF � 2 and
the slope is surprisingly enhanced over the RPA value
accordingly. Even for jqj > 2pF, where S�q; !� varies in
proportion to !3 for small ! due to two-pair excitations,
the shoulder a is still perceptible at !, well above the
threshold of the one-pair region [ � �q2 � 2pFjqj�=2m],
giving a large enhancement of S�q; !�. Around the
threshold, one-pair and multipair excitations are super-
imposed and inseparably interfere.

The same interference effect is considered to bring
about the flattened structure of S�q; !� seen between a
and b for jqj � 1:4pF. In fact, the lowest-order term in
perturbation for the two-pair contribution to S�q; !�
diverges in the one-pair region, because the self-energy-
insertion term includes the energy denominator squared
216402-2
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FIG. 3 (color online). Comparison between S�q; !� of the
electron liquid at rs � 2:08 and the experimental one for
Al metal.
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FIG. 2 (color online). Dielectric function at (a) q � 0:8pF

and (b) q � 1:6pF compared with that in the RPA for the
electron liquid at rs � 5. Its imaginary part is given for q in
the range �1:8–2:4�pF in (c), while in (d) the peak position in
Im "�q; !�, !ex�q� is plotted in the �q;!� plane, together with
the plasmon dispersion !p�q� determined by the zeros of
Re "�q; !� in both the present method and the RPA. The
hatched area represents the one-pair excitation region drawn
using the bare dispersion �p.
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which vanishes at the same time as the very argument
in the energy-conserving � function. Even stronger
divergences occur in higher-order terms due to repeated
self-energy insertions, piling up the same energy denom-
inators; the same applies to multipair contributions. These
divergent terms can be tamed into the convergent S�q; !�
by taking an infinite sum using G, not G�0�, which makes
one-pair and multipair excitations inseparable [5].

To trace the origin of a, we plot "�q; !� in Fig. 2 at
various values of jqj. The present dielectric function
deviates drastically from the RPA result; the most salient
feature is the presence of a sharp peak in Im "�q; !� at
low !, representing a drastic lower shift of one-pair
excitation energies from those in the RPA. In Fig. 2(d),
the peak position in Im "�q; !�, !ex�q�, is plotted; it stays
in the one-pair region and increases almost linearly with
q for small q, but it rises abruptly near the internal
boundary of the one-pair region, ! � �2pFq� q2�=2m,
followed by a small anomaly at q � 2pF. Thereafter, as
seen in Fig. 2(c), the peak gradually disappears. This
sharp peak in Im "�q; !� gives rise to the shoulder a of
S�q; !�, though the peak position is not the same as a,
since S�q; !� is not directly related to Im "�q; !� but to
Im "�q; !�=j"�q; !�j2. For q < qc or pF, the shoulder a
disappears due to the huge value of Re "�q; !�.
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The sharp peak above may be ascribed to the electron-
hole multiple scattering. The RPA describes an independ-
ent electron-hole pair, giving the excitation energy as
j�p	q � �pj, but actually the attractive screened potential
works between the pair; this attraction effectively reduces
the excitation energy. The sharp peak is then interpreted
as an excitonic effect [17]. The possibility of this effect to
enhance the interband optical conductivity of sodium was
suggested by a simple model calculation [18].

Now we consider S�q; !� of Al, a metal regarded
as most electron-liquid-like with rs � 2:08. Inelastic
x-ray scattering experiments give a well-converged
S�q; !� [9–11]; a complex structure composed of
q-orientation-independent double peaks for large jqj is
confirmed. Such a complex structure has been attributed
mainly to the band-structure effect [19,20] by comparing
the experiment with Sband�q; !� the Lindhard-like dy-
namical structure factor calculated with the Bloch func-
tions given in the LDA (local-density approximation). To
improve on the theory, effects of exchange and correlation
should be included in Sband�q; !�. The effects have long
been treated in terms of the local-field correction, which
amounts to approximating ��p; p	 q� simply to �LFC�q�
with fhom

xc �q� chosen to reproduce the experiment. This is
called the time-dependent-LDA approach [11,21].

We shall make a different approach to the experimental
S�q; !�, since accurate knowledge of S�q; !� of the elec-
tron liquid is now available; we first compare theory with
experiment without any adjustable parameters and then
216402-3
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identify the band-structure-induced effect. In Fig. 3, two
typical cases are shown for comparison; (a) shows the
plasmon-dominant region (q < qc with qc � 0:8pF), and
(b) shows the one-shoulder-one-peak region (q * 1:4pF).
In (a), we find that the electron-liquid model reproduces
very well the peak position of the plasmon and its
damping width; besides the plasmon peak, a few
q-orientation-dependent small structures are experimen-
tally observed, but they are ascribed to the band-structure
effects such as the so-called zone-boundary collective
states [10,21,22].

In (b), significant differences can be seen between
theory and experiment, but a closer inspection reveals a
few important points: (i) For !< EF�� 11 eV�, a quite
good agreement can be seen, irrespective of q, indicating
the relevance of the electron-liquid model to Al. (ii) In
Fig. 3(b), a reasonable correspondence can be seen be-
tween two characteristic energies of theory, a0 and b0, and
those in experiment, a and b, respectively; this implies
that some characteristic features of the electron liquid
persist in Al even for ! > EF. (iii) The present theory
gives no peak at c. Thus, the peak c should be attributed
to the band-structure effect in line with the analysis with
the use of Sband�q; !� [10,20,21], suggesting that this peak
reflects the existence of a pseudogap between b and c,
namely, around ! � 30 eV, as seen in the LDA band
calculation [23].

In order to clarify the origin of the pseudogap, we
perform a band-structure calculation of fcc Al using the
GGA (generalized gradient expansion approximation)
[24] and analyze the density of states (DOS) into
partial-wave components, as seen in Fig. 4. We make
some observations: (i) Very good agreement is obtained
between the total DOS of the band calculation and that of
the free-electron model for !< 5 eV and reasonably
good agreement for !< 25 eV above the Fermi level.
(ii) A large pseudogap is seen around 30 eV, invalidating
the application of the electron-liquid model to Al in this
energy region or above. (iii) The partial-wave analysis
reveals that the pseudogap is created by two factors: (1)
the narrowness of both 3d and 4f bands and (2) a large
enough separation between those bands.We also ascertain
216402-4
that such a pseudogap cannot be seen in Na by performing
a similar calculation. Hence, the appearance of such a
pseudogap depends entirely on the difference in the
strength of the ionic potentials between Al3	 and Na	.
We may thus conclude that the peak c reflects the strong
tightly binding nature of unoccupied 3d and 4f bands in
Al. It is interesting that nearly localized states exist well
above the extended 3s and 3p bands.

In summary, we have given an accurate calculation
of S�q; !� of the electron liquid and discussed its charac-
teristic features and their physical meanings. We have
analyzed the experiments on Al and found that the
electron-liquid model applies to Al on the whole and
especially well for !< EF. The discrepancy from the
model may be mainly ascribed to the strong tight-binding
nature of unoccupied 3d and 4f bands in Al.
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