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Smectic Phases with Cubic Symmetry: The Splay Analog of the Blue Phase
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We report on a construction for smectic blue phases, which have quasi-long-range smectic transla-
tional order as well as long-range cubic or hexagonal order. Our proposed structures fill space with a
combination of minimal surface patches and cylindrical tubes. We find that for the right range of
material parameters, the favorable saddle-splay energy of these structures can stabilize them against
uniform layered structures.
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identical [11] for layered systems with uniform spacing.
The saddle-splay energy of a director field N is [8]

FSm � d3x
4
��r��2 � 1�2 � 2K1H

2 ; (3)
Liquid crystalline blue phases exhibit true three-
dimensional, periodic orientational order. Two of these
phases possess cubic symmetry (BP1 and BP2) while the
third (BP3) is thought to be an isotropic melt of double-
twist cylinders [1,2]. Recently, new phases of matter have
been identified that possess the quasi-long-range transla-
tional order of smectics [3] and, at the same time, three-
dimensional orientational order. These three distinct
smectic blue phases have been observed near the isotropic
transition of these compounds: BPsmA1 has cubic sym-
metry, BPsm2 has orthorhombic symmetry, and BPsm3 is
isotropic [4]. The precise physical properties of these
materials have been the study of intense investigation in
recent years [4–7]. However, there is no obvious way to
incorporate smectic ordering into the traditional double-
twist tube blue phase ordering put forward by Meiboom
et al. [8] for nematic blue phases. In general, since smectic
ordering is incompatible with cubic symmetry, it is ex-
pected that any blue phase structure must include smectic
defects as well as orientational defects. Though a model
for double-twist cylinders with smectic order has been
proposed [9], the simplest variant of that model is incom-
patible with experimental details [6]. In this Letter, we
propose a new scheme for constructing an achiral smectic
blue phase that fills space with continuous concentric
layers possessing cubic symmetry. This new phase suffers
elastic energy costs arising from nonuniform layer spac-
ing and layer bending as well as condensation energy
costs arising from melted regions. However, we show
that when the saddle-splay constant, K24, is negative
enough, these energy costs can be compensated by the
gain in Gaussian curvature energy in the surfaces. Note
that screw dislocations are also favored when K24 < 0 [9],
suggesting that twist grain boundary (TGB) phases are
more likely to occur in such systems. Since our new phase
does not require chirality, it could be realized in a ther-
motropic liquid crystal near a compensation point [10],
especially in the vicinity of a TGB phase.

The key ingredient in our construction is the observa-
tion that saddle splay and the Gaussian curvature are
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FSS � K24

Z
d3xr � ��N � r�N�N�r � N��; (1)

where K24 is a Frank constant. Because this term is a total
derivative it is often a neglected boundary term. However,
defects introduce boundaries, and it is precisely the
saddle-splay energy that stabilizes the standard nematic
blue phase. Since that phase is riddled with defects,
the saddle-splay boundary energy grows linearly with
volume.

If space can be filled with surfaces normal to N, then
FSS has a different interpretation—if we replace the z
integration in (1) with an integration over a Lagrangian
coordinate n, which labels the surfaces, then

FSS � �2K24

Z
dn

Z
dxdy

dz
dn

Kn�x; y�

� �2K24

Z
dn

Z
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����������������
gn�x; y�

p
an�x; y�Kn�x; y�;

(2)

where an�x; y� is spacing between layer n and n� 1 at
�x; y�, Kn is the Gaussian curvature of the nth surface, gn
is the determinant of the two-dimensional surface metric,
and

�����
gn

p
an � dz=dn follows from conservation of vol-

ume. Since the Gauss-Bonnet theorem [11] implies that
for a surface of genus g the integrated Gaussian curvature
is 4��1� g�, we expect that higher-genus surfaces are
favored by the saddle-splay term. Note that since an�x; y�
is not necessarily constant, the integral (2) is not simply
topological. Nonetheless this identification will aid us in
our choice of smectic structures. We note that in our
model, the saddle splay is a measure of the layer normals,
not the nematic director. When the nematic director fol-
lows the layer normal these are, of course, equivalent.
However, in type-II smectics it is possible for the saddle
splay of the director field to differ in its precise numerical
value from the saddle splay in the layers.

We must choose our structures in the context of the
standard bulk free energy of a smectic liquid crystal:Z �

B
�
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FIG. 1. Proposed P surface smectic. In (a) we show the P cell
and the interior structure composed of concentric P cells and
cylinders. In (b) we fill in the entire (cubic) unit cell with eight-
eighths of the central structure. We have cut away one-quarter
of the volume to show interior smectic layers.
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where the smectic density is � / cos�2��=a�, ��x; y; z�
is a phase field, a is the layer spacing, B is the compression
modulus, K1 is the bend modulus, and H � 1

2r � N is the
mean curvature of the layers. Though we could capture
the same physics by replacing H with 1

2r
2�, we choose

the former for computational convenience.
We note that there is an intrinsic frustration between

the two terms in (3). Consider a family of layers xn��; ��
which are solutions to ��xn��; ��� � na. If N �
r�=jr�j is the normal to x0, then xn � x0 � naN is a
solution with vanishing compression energy: N �
r��xn� �

d
d�an���x0 � naN� � 1 and so jr�j � 1.

However, if �i;0 are the principal curvatures of x0, then,
since these surfaces are uniformly spaced, �i;n � �i;0=
�1� na�i;0� are the principal curvatures of xn. Thus, if
the mean curvature H � 1

2 ��1 � �2� vanishes for some
value of n, it will not vanish for any other value of n
unless �i;n � 0. Conversely, if H vanishes everywhere
and �i;n does not, then it is impossible to have equally
spaced layers. Therefore it is impossible to have both the
bending and the compression terms vanish unless all the
layers are flat. Thus any ground state must necessarily be a
compromise between nonuniform spacing and bending.

Though we may choose any number of initial space-
filling surfaces of constant �, we illustrate our approach
with a cubic structure. The Schwartz P surface, or
plumber’s nightmare, is a triply periodic minimal surface
which has the topology we seek. Because it is minimal,
H � 0 and K 
 0 everywhere on this surface. Moreover,
because of the mathematical interest in minimal surfaces,
the P surface has a simple parametric representation
which proves useful in computation. This surface will
be the template within which we fill with ‘‘concentric’’
surfaces. We refer to the section of the P surface in the
unit cell as the P cell and fill it in with concentric,
rescaled P cells. The smaller P cells will no longer
intersect the walls of the unit cell. We attach cylinders
to the open ends of the P cells to fill in the gaps. The
advantage of this construction is that we can easily cal-
culate the compression energy for the cylinders and the
bending energy for the P cells. Because the inside and the
outside of the P surface are identical, our construction
self-consistently fills the entire unit cell and we need
focus only on the interior of the P cell—the remainder
of the unit cell is filled with eight separate octants of the
P cell. Our approach solves the frustration between com-
pression and bending by building the smectic phase out of
pieces that have no curvature (the P cells) and pieces
which can have uniform spacing (the cylinders) as shown
in Fig. 1.

The energetics of this structure has four components:
the bending energy, the core energy, the saddle-splay
energy, and the compression energy. By our construction
there is no bending energy on the P cells since they are
minimal. Thus the curvature energy is nonvanishing only
on the cylindrical sections of the unit cell. If �o is the
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radius of the largest cylinder, then geometry requires
�o � L=4, where L is the size of the unit cell. By con-
struction the length of the cylindrical region of radius r is
2�o � 2r and H � 1=�2r� so the bending energy is

FB � 24��oK1

�
log

�
�o

�C

�
�

�
�C

�o
� 1

�	
; (4)

where �C is the short-distance cutoff. Inside this cutoff
region the smectic order vanishes and there is an energy
penalty proportional to the disordered region. If the cut-
off is comparable to the molecular scale then, in addition,
there is a �1 nematic disclination line down the cylin-
drical core which contributes to the core energy as well
[12]. Including the energy of the core region at the inter-
section of these lines, we have

Fcore � 24��o � �C�"�
64

�
�C"; (5)

where " is a line tension. The saddle-splay energy offsets
these positive energy contributions. As in the traditional
chiral blue phases, the saddle splay can easily be calcu-
lated as a boundary term along the �1 disclination lines.
Converting the volume integral (1) into a surface integral
we see that the cylindrical cores of the P cells contribute
�2� per unit length, and each unit cell has a length
24��o � �C� of such tubes (including the contribution
from the other P cell in the unit cell). Because the inte-
gral over the P cell in the center vanishes, FSS �
�48�ajK24jN, where N � ��o � �C�=a is the number
of layers (recall that K24 must be negative).

The final energetic contribution to the smectic free
energy arises from the nonuniform spacing of the P cells.
By our construction, the part of the smectic which con-
sists of concentric pieces of P surface cannot have uni-
form spacing across the layers. However, there is an
energetically preferred difference in average radius be-
tween consecutive layers which we can vary to minimize
the compression energy. To perform the spatial integral
we divide our proposed structure into those parts which
have cylindrical symmetry and those which are pieces of
215504-2
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the P surface. In each region we define our coordinates
such that surfaces of constant phase are constants of one
variable. In the cylindrical region we use polar coordi-
nates. For the region filled with rescaled P cells, we may
define a new variable  through

r �  ro�!;"�; (6)

where r, !, and " are the usual spherical coordinates and
r � ro�!;"� is the equation of the P cell. Thus inside
the P cell  runs from zero to 1 and labels layers of
constant �.

For the phase field to capture the concentric layers, we
must have �� ro�!;"�; !; "� independent of ! and " for
fixed  . It follows that �� ro�!;"�; !; "� can depend only
on  . As we now show, the angular dependence of jr�j
(which appears in the free energy) is completely separable
from the  dependence as well.

Since jr�j is related to the layer normal through N �
r�=jr�j, we have r@r� � r � r� � �r �N�jr�j. But
since � � �� � � ��r=ro�, we also have r@r� �
�r=ro�@ � �  @ �� � and so �r �N�jr�j �  @ �� �
and is thus constant on any surface of fixed  . Choosing
an arbitrary reference direction �!o;"o� we can write
�r��2 � p�!;"��� �, with

p�!;"� �

�
r�!o;"o� �N�!o;"o�

r�!;"� �N�!;"�

	
2
; (7)

�� � � �r��2j ;!o;"o
; (8)

where p�!;"� is evaluated on a shell of constant �. Note
that p�!;"� is scale independent and may be evaluated on
any of the concentric P cells. By choosing the reference
direction, �!o;"o�, to be a point on the interface between
the P-cell region and the cylindrical region we can define
 � �=�o inside each of the six cylindrical regions,
where � is the radius in cylindrical coordinates. This
choice allows us to naturally continue �� � into the
cylindrical regions. The angular and  integrations de-
couple in these coordinates and the compression energy is
quadratic in �� �:

FC �
B
2
�3
o

Z
d � 2�IP1 � IP2�� � � IP3�

2� ��

� 24� �1�  ��1� �� ��2�; (9)

where the three numerical constants IP1 � 72:42, IP2 �
65:74, and IP3 � 17:10 are moments of p�!;"� which
capture the geometry of the P cell and were calculated
with the aid of the Surface Evolver software package [13].
Since the other contributions to the total free energy do
not depend on �� �, we minimize FC by varying the
integrand in (9) with respect to �� � and find that the
resulting total compression energy in the layered P sur-
face structure is FC � 2:77B�3

o, with a very weak depen-
dence on the core size �C for �C � �o.
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For our proposed smectic structure to be stable against
the uniform flat phase, the positive energy contributions
from FC, FB, and Fcore must be compensated by a large
negative saddle-splay energy. Choosing the cutoff �C to
be the molecular scale a, we minimize the free energy
density F � �4�o�

�3�FC � FB � Fcore � FSS� with re-
spect to �o and find a stable minimum when

jK24j * "=�; jK24j � K1N lnN;

jK24j � B�2
oN:

(10)

The preferred cell size is on the order of

N �
�o

a
�

3�jK24j � �4=�� 3=2�"
2�jK24j � "

: (11)

It is worth commenting on the limits in (10). At the
smectic to nematic transition, neither K1 nor K24 suffer
from anomalous divergences. Thus this phase is stable
only when jK24j is exceptionally large. Numerically
minimizing to give a concrete example, we find that
when K24 � �20K1 and " � 0:88�2�jK24j� that N � 15
(thus L � 60a, consistent with experimental results for
BPsmA1 [4]). For this structure to be stable against the flat
phase, B�2

o must be smaller than �20K1. Since B �
K1='2, where ' is the penetration length, this requires
that ' > 4a; i.e., the system must be an extreme type-II
smectic. Were we to relax the constraint that H � 0 in the
central region, the compression and curvature could com-
pete and we would expect that FC �

���������
BK1

p
�2
o � B'�2

o. In
this case ' could be significantly smaller, though it would
still scale as N.

The resulting nematic texture of the cubic smectic is
the splay analog of the traditional chiral blue phase. How-
ever, this splay version of the blue phase arises through a
completely different mechanism than the traditional cho-
lesteric blue phase: in the traditional blue phase the de-
fects are kept apart by the pitch of the cholesteric; here
the defects are kept apart by the large energy cost of the
line defects which connect them. Additionally, though the
traditional blue phase is stabilized by a large positive
value of K24 our blue phase requires a large negative value
of K24 [8]. The smectic order, however, is essential to
prevent the unwinding of the �1 disclinations which are
responsible for the saddle-splay energy. Note that if this
smectic phase is energetically stable, then the equivalent
nematic phase with B � 0 would also be stable. Because
there is no condensation energy associated with the ab-
sence of smectic order, in the nematic phase " will be
smaller than in the corresponding smectic phase. As "
shrinks, the number of layers approaches a limiting value
of 1.5 and the lattice constant is comparable to the core
size. It is likely that such a configuration would melt due
to fluctuations, though this warrants further investigation.
The remarkable aspect of both the smectic and nematic
phases presented here is that they exist without any chi-
rality of the molecules. Since the stability of this phase
215504-3
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FIG. 2. Rotationally averaged form factor for the unit cell
with N � 15. The umbilic peak corresponds to the layering
along the diagonal of the unit cube. The cylinder peak arises
from the concentric cylinder regions.

FIG. 3. Repeat unit of Schoen’s I-WP surface. This surface
has genus g � 7 so

R
KdS � �24�.
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requires a careful tuning of the core energy density " and
K24, it can occur only over a small range of temperature.

To determine the degree of ordering in our structure,
we calculated the powder-averaged form factor of the unit
cell for N � 15. Since every line passing through the
center of the unit cell intersects precisely 60 layers, we
can infer the degree of ordering along any direction
simply from the location of the peak. Our results are
shown in Fig. 2. Not surprisingly, we found a large peak
in the directions normal to the eight points at which the P
surface is perfectly flat (the umbilics of the P surface).
The corresponding direction relative to the unit cell is
��1;�1;�1�. We also found weaker peaks along the
��1; 0; 0�, �0;�1; 0�, and �0; 0;�1� directions. These arise
from the concentric cylinder regions. We note that the
eight peaks along the cell diagonal do not correspond to
the observed symmetry of the smectic blue phases,
though this can be changed with a different choice for
our unit cell. However, we have demonstrated a ‘‘proof of
principle’’ that the construction of splay blue phases is
possible. A better candidate for BPsmA1 is Schoen’s I-WP
surface, pictured in Fig. 3. This surface is also triply
periodic, though it is flat along the ��1; 0; 0�, �0;�1; 0�,
and �0; 0;�1� directions and so in x ray we would expect
the primary peaks along these directions. Since the I-WP
surface has genus g � 7, the integrated surface Gaussian
curvature is �24� and we expect that the saddle-splay
energy would be even more negative than for the P cell.
Calculation of the total energy of an I-WP smectic is
more difficult than for the P smectic because the region of
the cubic cell outside the I-WP surface is not identical
to the region inside. Based on the results here we expect
that the compression energy will be unimportant for
sufficiently large '=a.
215504-4
We have outlined a model for smectic blue phases and
the splay analog of the traditional blue phase. The favor-
able saddle-splay energy of our structure is sufficient to
stabilize it against the flat smectic phase for a realistic
range of material parameters which may be encountered
near the isotropic transition. Our model presents an en-
tirely new and promising organizational principle for
smectic systems.

The authors thank E. Grelet, T. C. Lubensky, B. Pansu,
and T. R. Powers for insightful criticism and
A. Finnefrock for useful assistance. This work was sup-
ported by NSF Grants No. DMR01-02459 and No. INT99-
10017 and by L. J. Bernstein.
[1] Z. Kutnjak et al., Phys. Rev. Lett. 74, 4859 (1995); J. B.
Becker and P. J. Collings, Mol. Cryst. Liq. Cryst. 265, 163
(1995).

[2] H.-S. Kitzerow and P. P. Crooker, Phys. Rev. Lett. 67,
2151 (1991); H. M. Hornreich, Phys. Rev. Lett. 67, 2155
(1991).

[3] B. Pansu et al., J. Phys. II (France) 7, 751 (1997).
[4] E. Grelet et al., Phys. Rev. E 65, 050701(R) (2002).
[5] E. Grelet et al., Phys. Rev. Lett. 86, 3791 (2001).
[6] B. Pansu et al., Phys. Rev. E 62, 658 (2000).
[7] E. Grelet et al., Phys. Rev. E 64, 010703(R) (2001).
[8] S. Meiboom et al., Phys. Rev. Lett. 46, 1216 (1981).
[9] R. D. Kamien, J. Phys. II (France) 7, 743 (1997).

[10] H. Stegemeyer et al., Z. Naturforsch. A 44, 1227 (1989).
[11] R. D. Kamien, Rev. Mod. Phys. 74, 953 (2002).
[12] If the �1 disclination line ‘‘escapes’’ into the third

dimension, a lattice of hedgehogs would ensue which
would still have a line energy; see S. Östlund, Phys. Rev.
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