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Border between Regular and Chaotic Quantum Dynamics
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We identify a border between regular and chaotic quantum dynamics. The border is characterized by
a power-law decrease in the overlap between a state evolved under chaotic dynamics and the same state
evolved under a slightly perturbed dynamics. For example, the overlap decay for the quantum kicked
top is well fitted with �1� �q� 1��t=��2�1=�1�q� (with the nonextensive entropic index q and �
depending on perturbation strength) in the region preceding the emergence of quantum interference
effects. This region corresponds to the edge of chaos for the classical map from which the quantum
chaotic dynamics is derived.
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Schrödinger equation. Indeed, like the overlap between
Liouville probability densities, the overlap between any

use O2 as the fidelity. Here, we follow [11] and simply use
the overlap, O.
Classical chaotic dynamics is characterized by strong
sensitivity to initial conditions. Two initially close points
move apart exponentially rapidly as the chaotic dynamics
evolve. The rate of divergence is quantified by the Lya-
punov exponent [1]. At the border between chaotic and
nonchaotic regions (the ‘‘edge of chaos’’), the Lyapunov
exponent goes to zero. However, it may be replaced by a
generalized Lyapunov coefficient [2] describing power-
law, rather than exponential, divergence of classical
trajectories.

This Letter identifies a characteristic signature for the
edge of quantum chaos. Quantum states maintain a con-
stant overlap fidelity, or distance, under all quantum
dynamics, regular and chaotic. One way to characterize
quantum chaos is to compare the evolution of an initially
chosen state under the chaotic dynamics with the same
state evolved under a perturbed dynamics [3–5]. When
the initial state is in a regular region of a mixed system, a
system with regular and chaotic regions, the overlap
remains close to 1. When the initial state is in a chaotic
zone, the overlap decay is exponential. This Letter shows
that at the edge of quantum chaos there is a region of
polynomial overlap decay.

The Lyapunov exponent description of chaos is as
follows [1]. If �x0 is the distance between two initial
conditions, we define � � lim�x0!0�

�xt
�x0

� to describe how
far apart two initially arbitrarily close points become at
time t. Generally, ��t� is the solution to the differential
equation d��t�

dt � �1��t�, such that ��t� � e�1t (�1 is the
Lyapunov exponent). When the Lyapunov exponent is
positive, the dynamics described by ��t� is strongly sen-
sitive to initial conditions and we have chaotic dynamics.

This description of chaos works well for classical
Newtonian mechanics, but it cannot hold true for quan-
tum mechanical wave functions governed by the linear
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two quantum wave functions is constant in time. This
difficulty has led to the study of ‘‘quantum chaos,’’ the
search for characteristics of quantum dynamics that
manifest themselves as chaos in the classical realm [6–9].

As a possible signature of quantum chaos, Peres [3,4]
proposed comparing the evolution of a state under an
unperturbed, H, and perturbed, H � �V, Hamiltonian
for chaotic and nonchaotic dynamics. The divergence of
the states after a time t is measured via the overlap

O�t� � jh u�t� j  p�t�ij; (1)

where  u is the state evolved under the unperturbed
system operator, and  p is the state evolved under the
perturbed operator. Recent insights have sharpened the
differences between chaotic and regular dynamics under
this approach, and several regimes of overlap decay be-
havior based on perturbation strength have been identi-
fied. The overlap decays for a short time as a quadratic.
After this time, for chaotic dynamics with weak pertur-
bation the overlap decay is Gaussian, as expected from
first order perturbation theory [10–12]. For stronger per-
turbations, where perturbation theory breaks down, the
overlap decay is exponential. This occurs when the
magnitude of a typical off diagonal element of V ex-
pressed in the ordered eigenbasis of H is greater than
the average level spacing of the system, �. The regime
of exponential overlap decay is called the Fermi golden
rule (FGR) regime [12,13]. The rate of the exponential
decay will increase with stronger perturbation as the
perturbation strength squared until the decay rate reaches
a value given by the classical Lyapunov exponent
[12,14,15] or the bandwidth of H [12]. The crossover
regime from Gaussian to exponential decay has also
been studied [13]. We note that many of the works cited
2002 The American Physical Society 214101-1
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FIG. 1. Overlap versus time for initial angular momentum
coherent states located in the chaotic region and the regular
region of the quantum kicked top. The system has a spin 120
and is evolved under the kicked top Hamiltonian with ! � 3
and !0 � 3:015. The overlap of the state in the chaotic region
decreases exponentially with the number of iterations of the
map. The state in the regular region is practically an eigenstate
of the system and therefore oscillates close to unity.
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For regular, nonchaotic systems the FGR regime over-
lap decay is a Gaussian, faster than the exponential decay
of chaotic dynamics. This nonintuitive result is explained
using a correlation functions formulation of the overlap
by Prosen [11]. In addition, a power-law decay / t3=2 has
been found for an integrable system [16].

The initial overlap decay behavior continues until some
saturation level [11]. For coherent and random pure states,
the saturation level 1=N for the exponential decay (in the
FGR regime) and 2=N for Gaussian decay (in the weak
perturbation regime), where N is the dimension of the
system Hilbert space. However, for eigenstates of the
system and mixed random states, the saturation level
increases with increasing perturbation strength [11].

Here we study a mixed system, a system with both
chaotic and regular dynamics. Coherent states within the
regular regime are practically eigenstates of the system
and the overlap of these states oscillates close to unity
[4,11]. This is shown in Fig. 1 where the initial coherent
state is centered at a fixed point of order one of the regular
map. Coherent states in the chaotic regime of the system
show exponential overlap decay in the FGR regime and
Gaussian overlap decay for weak perturbations. We show
that, in both the FGR and weak perturbation regimes,
states near the chaotic border have a polynomial overlap
decay.

In 1988, one of us [17] introduced in statistical me-
chanics the generalized entropy form

Sq � k
1

q� 1

 
1�

XW
i�1

pqi

!
; (2)

where k is a positive constant, pi is the probability of
finding the system in microscopic state i, and W is the
number of possible microscopic states of the system; q is
the entropic index which characterizes the degree of the
system nonextensivity. In the limit q! 1, we recover the
usual Boltzmann entropy

S1 � �k
XW
i�1

pi lnpi: (3)

To demonstrate that q characterizes the degree of the
system nonextensivity, it is useful to examine the Sq
entropy addition rule [18]. If A and B are two independent
systems such that the probability p�A� B� � p�A�p�B�,
the entropy of the total system Sq�A� B� is given by the
following equation:

Sq�A� B�

k
�
Sq�A�

k
�
Sq�B�

k
� �1� q�

Sq�A�Sq�B�

k2
: (4)

From the above equation it is realized that q < 1 corre-
sponds to superextensivity and q > 1 to subextensivity.
Using this entropy to generalize statistical mechanics and
thermodynamics has helped explain many natural phe-
nomena in a wide range of fields.

One application of this nonextensive entropy occurs in
one-dimensional dynamical maps. As explained above,
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when the Lyapunov exponent is positive, the system dy-
namics is strongly sensitive to initial conditions and is
characterized as chaotic dynamics. When the Lyapunov
exponent is zero, it has been conjectured [2] (and proven
[19] for the logistic map) that the distance between two
initially arbitrarily close points is described by d�

dt �
�qsen�

qsen leading to � � �1� �1� qsen��qsent�
1=�1�qsen�

(‘‘sen’’ stands for sensitivity). This requires the introduc-
tion of �qsen as a generalized Lyapunov coefficient. The
Lyapunov coefficient scales inversely with time as a
power law instead of the characteristic exponential of a
Lyapunov exponent. Thus, there exists a regime, qsen < 1,
�1 � 0, �qsen > 0, which is weakly sensitive to initial
conditions and is characterized by having power-law,
instead of exponential, mixing. This regime is called
the edge of chaos.

The polynomial overlap decay found for initial states
of a mixed system near the chaotic border are at the
‘‘edge of quantum chaos,’’ the border between regular
and chaotic quantum dynamics. This region is the quan-
tum parallel of the region characterized classically by the
generalized Lyapunov coefficient.

The system studied is the quantum kicked top (QKT)
[20] defined by the unitary operator:

UQKT � e�i�Jy=2 �he�i!J
2
z =2j �h: (5)

j is the angular momentum of the top and ! is the ‘‘kick’’
strength. We use a QKT with ! � 3 whose classical ana-
log has a mixed phase space, regions of chaotic and regu-
lar dynamics. The perturbed operator used is a QKT with
a stronger kick strength !0 � 3:015. Hence, the perturba-
tion operator is e�i��J

2
z =2j �h� where � � !0 � !.
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The classical kicked top is a map on the unit sphere,
x2 � y2 � z2 � 1:

x0 � z; y0 � x sin�!z� � y cos�!z�;

z0 � �x cos�!z� � y sin�!z�:
(6)

For ! � 3 there are two fixed points of order one at the
center of the regular regions of the map. They are located
at

xf � zf � �0:629 412 6; yf � 0:455 718 7: (7)

The regular regions of the classical phase space are seen
clearly in Fig. 4.

To locate the edge of quantum chaos, we work in the oo
(even under a 180� rotation about x and odd under a 180�

about y; see p. 359 of [4]) symmetry subspace of the QKT
with j � 120 (in the oo subspaceN � j=2).We set y equal
to yf of the positive fixed point and change z so that the
initial state can be systematically moved closer and fur-
ther from the fixed point of the map. An initial state with
a power-law decrease of overlap is found at zf � 0:124.
The overlap decay for this state at the edge of quantum
chaos is illustrated in Fig. 2 and is very well fit by the
FIG. 2. Overlap versus time for an angular momentum coher-
ent state initially located at the border between regular and
chaotic zones of the QKT of spin 120 and ! � 3. This region is
called the edge of quantum chaos and shows the expected
power law decrease in overlap. The top figure is for a pertur-
bation strength within the FGR regime, � � 0:015 and the
bottom figure is for a perturbation strength of � � 0:0003, well
below the FGR regime. On the log-log plot the power law decay
region, from about 20–70 in the FGR regime and 2000–7000
in the Gaussian regime, is linear. We can fit the decrease in
overlap with the expression �1� �qrel � 1��t=�qrel �

2�1=�1�qrel�

where, in the FGR regime, the entropic index qrel � 5:1 and
�qrel � 40 and in the Gaussian regime qrel � 3:8 and �qrel �
2500. The insets of both figures show lnqrelO � �O1�qrel � 1�=
�1� qrel� versus t2; since lnqx is the inverse function of exq �
�1� �1� q� x�1=�1�q�, this produces a straight line with a slope
�1=�2 (also plotted).
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solution of dO=d�t2� � �Oqrel=�2qrel (‘‘rel’’ stands for re-
laxation). Although we do not know how to derive this
differential equation from first principles, the numeri-
cal agreement is remarkable (see also [21]). A time-
dependent q-exponential expression analogous to the one
shown here has recently been proved for the edge of chaos
and other critical points of the classical logistic map [19].
The polynomial overlap decay is the transition between
the quadratic and exponential overlap decays. This tran-
sitory region does not appear for chaotic states (as shown
in Fig. 1) and is a signature of the edge of quantum chaos.

A power law also emerges for the above initial state in
the weak perturbation or Gaussian regime. Here we use
!0 � 3:0003. The power law in this regime is illustrated
in Fig. 2 and fit with the above equation.

The value of qrel remains constant at 3.8 for small
perturbations until the critical perturbation strength,
�c, when the typical off diagonal elements of V are larger
than �. We can approximate �c ’

���������������
2�=N3

p
� 5:4� 10�3

[12].When � is larger than �c, qrel increases. The behavior
of qrel and �qrel versus � can be seen in Fig. 3.

The location of the edge of quantum chaos for the QKT
of spin 120 does not match up with the edge of the
classical kicked top which appears at approximately zf �
0:2296. This implies that classically regular regions of
the kicked top appear chaotic on the QKT. As j is in-
creased, the top becomes more and more classical and
states exhibiting edge of quantum chaos behavior are
centered closer to the classical value for the edge of chaos.
Hence, for j � 150, 180, 210, and 240, the edge is
observed at zf � 0:124, 0.139, 0.151, 0.160, and 0.176,
respectively.

The edge of chaos in the quantum and classical maps
are not observed at the same value due to the size of the
angular momentum coherent state. The coherent state
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FIG. 3. qrel versus perturbation strength. The value of qrel
remains constant at 3.8 until the critical perturbation, after
which it increases. The relationship of �qrel versus perturbation
strength is shown on a log-log plot in the inset and is well fit by
a line with slope �1:06.
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FIG. 4. Classical phase space of the kicked top with angular
momentum coherent wave functions. 10 000 iterations of a
chaotic orbit starting from the point x � 0:6294, y � 0:7424,
z � 0:2294. The spherical phase space and the ellipsoidal
coherent states are projected onto the x-z plane (only y > 0
shown) by multiplying the x and z coordinates of each point by
R=r where R �

���������������������
2�1� jyj�

p
and r �

�����������������
�1� y2�

p
[4]. The regular

regions of the kicked top are clearly visible. Shown is a j � 120
wave function (stars) and a j � 240 (circles) wave function
both at the edge of quantum chaos. Note that the variance of the
j � 120 wave function is much larger than the variance of the
j � 240 wave function. Hence, the behavior characteristic of
the edge of quantum chaos appears further from the fixed point
of the classical map.
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grows as j decreases causing it to ‘‘leak out’’ into the
chaotic region even though it is centered away from the
chaotic border. This causes behavior characteristic of
the edge of chaos to appear at different values depending
on the dimension of Hilbert space. Figure 4 shows the
wave functions for two values of j superimposed on the
classical phase space. This gives an idea as to how large
the wave function is compared to the regular region of
the map.

In the region of j values that we have explored, no
significant changes have been detected for qrel, because
the �c changes only slightly. However, �qrel decreases with
increasing j.

To conclude, we have located a region on the border of
chaotic and nonchaotic quantum dynamics. Quantum
states located in this region exhibit a power-law decrease
in overlap as opposed to the exponential overlap decay
exhibited by fully chaotic quantum dynamics. The clas-
sical parallel to this region is the border between regular
and chaotic classical dynamics which is characterized by
the generalized Lyapunov coefficient.
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