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Measurement of the Photonic de Broglie Wavelength of Entangled Photon Pairs Generated
by Spontaneous Parametric Down-Conversion
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Using a basic Mach-Zehnder interferometer, we demonstrate experimentally the measurement of the
photonic de Broglie wavelength of entangled photon pairs (biphotons) generated by spontaneous
parametric down-conversion. The observed interference manifests the concept of the photonic
de Broglie wavelength. We also discuss the phase uncertainty obtained from the experiment.
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FIG. 1. Schematic experimental setup of the biphoton inter-
ference. KN: KNbO crystal, BS1� 3: beam splitters, IF:
experiment is shown in Fig. 1. Pairs of photons were
3

interference filters, APD: avalanche photodiodes.
The nature of entanglement or quantum correlation
between two or more particles has attracted great interest
and produced many applications in quantum information
processing [1], such as quantum computation [2], quan-
tum cryptography [3], and quantum teleportation [4–7].
Especially, a number of novel experiments have used
parametric down-converted photons because they pro-
duce a superior environment for the realization of ideas
concerning quantum entanglement. In addition to such
applications to quantum informatics, the genuine quan-
tum optical properties of parametric down-converted
photons are also very attractive. Jacobson et al. [8] pro-
posed the concept of the ‘‘photonic de Broglie wave-
length’’ in multiphoton states. They argued that the
photonic de Broglie wavelength of an ensemble of pho-
tons with wavelength � and number of photons n can be
measured to be �=n using a special interferometer that
does not split the multiphoton states into constituent
photons. Following this concept, Fonseca et al. [9] used
a kind of Young’s double slit interferometer to measure
the photonic de Broglie wavelength of entangled photon
pairs (‘‘biphotons’’) generated by parametric down-
conversion. Boto et al. [10] proposed the principle of
‘‘quantum lithography,’’ utilizing the reduced interfer-
ometric wavelength of nonclassical n photon states for
optical imaging beyond the classical diffraction limit.
Recently, a proof-of-principle experiment in quantum
lithography was demonstrated by D’Angelo et al. [11]
utilizing parametric down-converted biphotons. In this
Letter, we propose and demonstrate the measurement of
the photonic de Broglie wavelength for the n � 2 state in
a very simple and straightforward manner, utilizing bi-
photons generated by parametric down-conversion and a
basic Mach-Zehnder (MZ) interferometer. We show that
not only the ‘‘wavelength’’ but also the coherence length
of the biphoton is different from those of a single photon.
We also discuss the uncertainty of phase measurements
obtained from our experiment, and show that the phase
uncertainty is below the standard quantum limit ex-
pected in classical one-photon interference.

The schematic view of the apparatus used in our
0031-9007=02=89(21)=213601(4)$20.00 
generated by spontaneous parametric down-conversion
(SPDC) in a 5-mm-long KNbO3 (KN) crystal, the tem-
perature of which is controlled and stabilized to within
0.01 �C. The pump source of the SPDC was the second
harmonic light of a single longitudinal mode Ti:sapphire
laser operating at �0 � 861:6 nm (linewidth �0 �
40 MHz). We selected correlated photon pairs traveling
along two paths (P0 and P1) by two symmetrically placed
pinholes. The central wavelength of the photon pair was
tuned to degenerate at 861.6 nm by controlling the KN
temperature. The MZ interferometer was composed of
two 50%=50% beam splitters (BS1 and BS2). A biphoton
was generated at either one (P2 or P3) of the interfer-
ometer arms when a pair of down-converted photons
simultaneously entered at both input ports of a beam
splitter (BS1), as a result of Hong-Ou-Mandel (HOM)
interference [12]. By observing the HOM interference,
L1 was adjusted so that the coincidence rate detected at
both output ports (P2 and P3) of BS1 was minimized (see
Fig. 2). Thus we can prepare the entangled biphoton state

1���
2

p �j2iP2j0iP3 � j0iP2j2iP3	 (1)

in the MZ interferometer, where jnii denotes n photons’
travel along the arm i. The path-length difference (L2)
between the two arms of the MZ interferometer was
controlled by a piezoelectric positioner, which was ca-
pable of controlling L2 with nanometer resolution. The
two paths were combined at the output beam splitter
(BS2), and the biphoton interference was measured at
one of the output ports (P5) of BS2. The biphoton
2002 The American Physical Society 213601-1
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FIG. 2. Coincidence-photon-counting rate detected at the two
output ports of BS1 as a function of the optical path-length
difference (L1) between the two paths from KN and BS1 in
Fig. 1. Open circles indicate experimental data, and the solid
curve is a fitted function that assumes the observed photons
have a rectangular spectral shape.
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interference pattern was recorded by a two-photon detec-
tor, consisting of a 50%=50% beam splitter (BS3) and two
avalanche photodiodes (APD) followed by a coincidence
counter. We put an interference filter (IF: center wave-
length �c � 860 nm, bandwidth � � 10 nm) in front of
each APD to eliminate undesired background light. In
general, the interferometer was designed to measure
the photonic de Broglie wavelength of the biphoton with-
out using any unreal optical components. For comparison,
we also measured the usual single-photon interference
by using a single detector and blocking one of the
input ports.

It is worth discussing the interference patterns we
expected to obtain in our experiment. For simplicity, we
consider only degenerate single-frequency photons. The
single-frequency treatment is adequate for predicting
most distinct properties of interference patterns for both
one-photon and two-photon detection, although it will be
necessary to consider multifrequency treatment in order
to discuss more-detailed phenomena such as the coher-
ence length of the interference. The one- and two-photon
counting rates (Ri and Rij, respectively) at an output port
Pi and Pj (i; j � 4; 5) of the interferometer are described
by

Ri�j 0;  1i	 � h 0;  1jâa
y
i âaij 0;  1i; (2)

Rij�j 0;  1i	 � h 0;  1jâa
y
i âa

y
j âajâaij 0;  1i; (3)

where âayi�j	 and âai�j	 are photon creation and annihilation
operators at the output port Pi�j	, and  0 and  1 denote the
quantum states of light at the two input ports P0 and P1,
respectively. The photon operators at the output ports are
connected to those of the input ports through the scatter-
ing matrices of the beam splitters and the optical path-
length difference [13]�
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and their Hermitian conjugates, where �2 and �3 are
phase retardations along the interferometer arms P2 and
P3, respectively. Here we assume the MZ interferometer
consists of lossless 50%=50% beam splitters. Using (4),
we can calculate the counting rates (2) and (3) for arbi-
trary input states of light. The resultant two-photon in-
terference patterns for the case of j 0;  1i � j1; 1i, i.e.,
where both inputs are n � 1 Fock states, are

R55�j1; 1i	 �
1
2�1� cos2�	; (5)

R45�j1; 1i	 �
1
2�1� cos2�	; (6)

where �  �2 ��3 � 2�L2=� is the optical phase
difference between the two arms, L2 the path-length
difference, and � the wavelength of the input light. Here
the constant coefficients of the right sides have been
omitted. The corresponding one-photon interference for
the case of j 0;  1i � j0; 1i becomes

R5�j0; 1i	 �
1
2�1� cos�	: (7)

From Eqs. (5)–(7), we see that both R55 and R45 will have
the oscillation period �=2, while R5 has the period �. This
oscillation period �=2 for the two-photon counting rate
R55 is attributable to the photonic de Broglie wavelength
�=n for the biphoton (n � 2) state. Although R45 will also
have the oscillation period �=2, it is not attributable to the
photonic de Broglie wavelength of the biphoton because
in this case the two photons are split from each other by
BS2. Furthermore, the oscillation period �=2 in R45 could
be observed even for classical states, while that in R55

could not. In fact, for the coherent input state j0; �i,

R55�j0; �i	 � R2
5 �

j�j4

4
�1� cos�	2; (8)

R45�j0; �i	 � R4R5 �
j�j4

8
�1� cos2�	: (9)

Although the coherent state is classified as a classical
state of light, the oscillation period of R45�j�; 0i	 be-
comes �=2. Consequently, the oscillation period �=2 of
R45 does not necessarily originate from the quantum
nature of light. On the other hand, in the classical treat-
ment, R55 should have the same period as R5 since
R55 � R2

5 and R5 � 0. Thus, the oscillation period �=2
of R55�j1; 1i	 reflects the quantum nature of the input field
and is consistent with the photonic de Broglie wavelength
of the biphoton. Hence, the intent of our experiment is to
measure the interference pattern of R55�j1; 1i	.

Before observing the interference pattern of the MZ
interferometer, we measured the HOM interference to
check the position of the zero path-length difference
L1 and to ensure that the biphotons were generated at
either arm of the interferometer. The observed HOM
interference, i.e., the coincidence counting rate between
the two output ports (P2 and P3) of BS1 as a function of
the optical path-length difference (L1), is presented in
213601-2
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Fig. 2. The visibility of the HOM interference was 0.97,
guaranteeing that the photon pair was traveling together
almost perfectly along either arm of the interferometer
when L1 � 0. To our knowledge, this is one of the best
visibilities ever obtained in a HOM interference experi-
ment. After the measurement of the HOM interference,
L1 was fixed at 0, where the coincidence rate was mini-
mized. Thus we prepared the entangled biphoton state (1)
in our interferometer.

Figure 3 shows the measured interference pattern for
both one-photon [R5�j0; 1i	: upper graph] and two-photon
[R55�j1; 1i	: lower graph] detection, as a function of path-
length difference (L2) around L2 � 0 �m. Note that
one of the input ports of the interferometer was blocked
during measurement of the one-photon counting rate;
otherwise, no interference was expected. For both one-
and two-photon counting rates, clear interference fringes
were observed. The fringe visibilities of the one- and two-
photon interferences were 0.88 and 0.75, respectively. It
can be seen in the figure that the one-photon interference
has a period of approximately 860 nm, whereas the period
in the two-photon interference is approximately 430 nm.
This result clearly indicates that the biphoton state ex-
hibits the interference as a ‘‘wave’’ whose length is half
that of the one-photon state. This is consistent with the
prediction that the photonic de Broglie wavelength of the
biphoton state would be �c=2. Thus, we have clearly
measured the photonic de Broglie wavelength of the
biphoton generated by SPDC.

We have also observed the difference in the coherence
length between the one- and two-photon counting rates,
as demonstrated in Fig. 4. Although the interference
oscillation in the one-photon counting rate disappears at
L2 � 400 �m, the interference of the two-photon count-
ing rate remains until the path-length difference is much
larger, indicating that biphotons have much longer
coherence lengths than do single photons. Since the spon-
taneous parametric down-converted photons have con-
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FIG. 3. Interference patterns in the one-photon (upper) and
two-photon (lower) counting rates at a path-length difference
of around 0 �m.
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siderably wide spectral widths, the coherence length of
the one-photon counting rate is governed by the spectral
bandwidth � of the interference filters placed in front of
the detectors. Thus, the coherence length of the one-
photon counting rate becomes very short (�2

c=��
70 �m). On the other hand, the coherence length of the
two-photon counting rate is governed by the spectral
width of the sum frequency of signal (�s) and idler (�i)
photons. This sum frequency is identical to the frequency
of pump photons (2�0) of the SPDC. Since we used the
second harmonic light of the single longitudinal mode
continuous laser as a pump source, its coherence length is
very long (c=�0 � 400 cm). As a result, a clear inter-
ference fringe was observed for the two-photon counting
rate even at L2 � 400 �m [14], whereas almost no
fringe was observed for the one-photon counting rate.

Thus far, a number of works concerning two-photon
interference have used parametric down-converted pho-
tons and either Mach-Zehnder or Michelson interfer-
ometer [15–18]. However, those previous experiments
did not intend to observe the photonic de Broglie wave.
Most of them [15,16,18] detected two split photons at
each of the output ports of the interferometer. In our
experiment, by detecting the two-photon counting rate
at one of the output ports, we directly showed that the
observed biphoton interference manifests the concept of
the photonic de Broglie wavelength. In this context, it is
worth discussing the uncertainty of phase measurements
in our experiment. There are a number of works con-
cerning accurate phase measurements beyond the stan-
dard quantum limit utilizing quantum interferometry
[19–22]. We have evaluated the phase uncertainty �
using the least-squares analysis of the experimental
data. Assuming that we have N data points of the inter-
ference fringes measured at � � �0 � 2m�=N (m � 1;
. . . ; N), and that the data statistics follow the Poisson
distribution, we obtain the phase uncertainty for the
perfect classical one-photon interference:
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FIG. 4. Interference patterns in the one-photon (upper) and
two-photon (lower) counting rates at a path-length difference
of around 400 �m.
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��1	 �

�������
2

Na

r
 ��1	

SQL; (10)

where a is the interference amplitude. Equation (10)
corresponds to the standard quantum limit (SQL) of the
phase uncertainty for one-photon interference ��1	

SQL;
note that Na=2 equals the total photon number detected
over the interference fringe. In contrast, we find for
perfect biphoton interference

��2	 �

����������
1

2Na

r
�

1

2
��1	

SQL: (11)

The factor 1=2 of ��2	 from ��1	
SQL is the direct con-

sequence of the reduced interference period, i.e., reduced
de Broglie wavelength of the biphoton. The reduction
factor is also attributable to the Heisenberg limit (1=n)
of the phase measurement using n photons (in our case
n � 2) [19,20]. The phase uncertainty obtained from the
experimental biphoton interference shown in Fig. 3 was
0:81��1	

SQL, indicating that it was indeed smaller than the
one-photon SQL. It was, however, still larger than the
expected Heisenberg limit 1

2 �
�1	
SQL, or even larger than

the SQL using two photons: ��2	
SQL � 1��

2
p ��1	

SQL. The
main reason for the incomplete reduction of the phase
uncertainty is the imperfect visibility of the measured
interference; our analysis indicated that the visibility
should have been higher than 7=9 for ��2	 to exceed
��2	

SQL. The phase uncertainty would have reached the
Heisenberg limit only if the visibility had been unity [22].

Finally, we note the relationship between our experi-
ment and the nonlocal nature of the entangled photon
pairs. As previously demonstrated [23–25], two-photon
quantum interference occurs for biphotons even using
two spatially separated interferometers.With these results
taken together, we can understand that the interferometric
properties of the biphoton originate from its nonlocal
quantum correlation in frequency between the constituent
photons, but not from the spatial closeness of the two
photons. The concept of photonic de Broglie wavelength
is attributable to a special case of more general treatments
[26,27] of biphoton interference, i.e., the case where the
two photons travel the same paths and are detected at
the same place. Furthermore, the concept is valid for the
cases where more than two photons travel together [8]. In
this sense, the photonic de Broglie wavelength reminds
the close similarity to the usual de Broglie wavelength of
matter. It is interesting that we observe the reduced
de Broglie wavelength regardless of any physical binding
between the two constituent particles; they exhibit the
de Broglie wavelength identical to a virtual compound
particle by means of the artificially controlled pathway
and detection procedure. Needless to say, the concept of
photonic de Broglie wavelength is not inconsistent with
the standard quantum treatment of light; rather, it pro-
vides an intuitive and essential way to understand the
213601-4
interferometric properties of the entangled multi-
photon states.

In conclusion, we have successfully measured the pho-
tonic de Broglie wavelength of the biphotons generated by
spontaneous parametric down-conversion utilizing a
Mach-Zehnder interferometer. Our results will encourage
novel applications, such as quantum lithography, that
utilize quantum-mechanical interference of entangled
photons.
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