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Relativistic Density Functional Calculations for Pt2
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First full-relativistic density functional calculations with the extension of the spin-polarization
functional for the relativistic density functional theory in their collinear and noncollinear form are
presented here for the molecular system Pt2. The agreement with experiment is very good.
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theory (DFT). DFT calculations depend on the choice of
the exchange-correlation functional and the treatment

details in [14,16]). The magnetization density at any point
in space is defined as magnetic moment per volume [17].
Introduction.—In the last two decades many spectro-
scopic studies of diatomic transition metals of the 3d and
4d periods have been published (see [1] and references
therein). Through this work the basic electronic structure
of the homometallic and heterometallic 3d and 4d dimers
has been discerned and a qualitative understanding of
many of these molecules has been established. In contrast,
the present knowledge of the 5d transition metal dimers is
much more limited. For instance, Pt2 is the only element
with an open 5d subshell for which the bond length has
been measured.

A new experimental investigation of Pt2 has recently
been published [1]. Airola and Morse were able to mea-
sure for the first time the resolved rotational spectrum of
the Pt2 molecule. They determined very precise values for
the bond energy, bond length, and the ground-state vibra-
tional frequency. Using different isotopes it was also
possible to determine the ground-state symmetry of the
electronic system. They compared the ground-state prop-
erties with that of the Au2 molecule and pointed out the
big influence of the open 5d shell of Pt on the bond energy
and the bond length. They also emphasized that there was
no theoretical ab initio method at that time which could
properly include relativistic effects and electron correla-
tion. Although in a rigorous sense this still is true we
present here a density functional calculation which comes
very close to this goal.

The first complete theoretical study of Pt2 using a
complete active space self-consistent field first-order
configuration interaction method has been done by
Balasubramanian [2]. While the ground-state symmetry
obtained in [2] is in agreement with the experimental
findings the bond length is slightly too long and the
vibrational frequency too low. The calculated bond en-
ergy represents only 63% of the measured value. More
recent calculations by Wang and Carter [3] using a simi-
lar method lead to an even worse result for the bond
energy (see also Table I).

An alternative approach is the density functional
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of the kinetic energy. The spectrum of the different
approximations of the kinetic energy starts with a purely
nonrelativistic approach with or without spin-orbit inter-
action, continues with the zeroth-order regular approxi-
mation (ZORA) [11,12] and ends with a full-relativistic
description. A comparison of these approximations and
corresponding results can be found in [9,13]. In this paper
we use the best possible method, i.e., the full-relativistic
treatment, for the kinetic energy. Because of this all
direct and indirect relativistic effects are included in
our calculations.

In the last three decades a series of different approxi-
mations for the exchange and correlation functionals were
introduced. An overview can be found in [14]. All these
functionals can be written in either relativistic or non-
relativistic form [4]. The two forms lead to different total
energies, but almost the same bond energies and bond
lengths in the case of molecules [13]. Therefore we will
not distinguish between these two forms and the results
for one form represent also the results for the other one.

A further difference between various density function-
als is the treatment of the spin of the electrons. In the
simplest form of nonrelativistic density functionals spin
is completely neglected. This approximation works quite
well for closed shell systems but leads to wrong results for
open shell molecular as well as atomic systems. A very
important improvement was achieved by extending these
functionals to spin-polarized (SP) forms [15]. In a rela-
tivistic description the spin should actually be included in
the relativistic form of the density functionals, which
depend on the four current density directly, but this
approach is not yet suitable for practical applications.
Alternatively, the spin can be included into the relativistic
form of the density functionals in a theoretical consistent
way via the magnetization density using a fictitious ex-
ternal magnetic field which is set to zero in the end
formulas (see for more details [14]). In this case the
exchange and/or correlation functionals depend not only
on the density but also on the magnetization density (see
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TABLE I. Ground state properties of Pt2. The abbreviation RLDA means the relativistic local density approximation for exchange
only [4], PW91 means both the exchange and correlation functionals from Perdew and Wang [5], B88 means the exchange only
functional from Becke [6], P86 means the correlation functional from Perdew [7], and VWN means the correlation functional from
Vosko et al. [8].

Reference Method De (eV) Re (a.u.) !	cm�1


This work X" (0.7) 4.85 4.36 240
This work X" (0.7) (SP) 3.69 4.36 235
This work X" (0.7) (SP,non) 3.22 4.36 230

This work RLDA=VWN 4.97 4.35 243
This work RLDA=VWN (SP) 4.19 4.35 239
This work RLDA=VWN (SP,non) 4.00 4.35 235

This work PW91=PW91 4.36 4.42 228
This work PW91=PW91 (SP) 3.33 4.42 225
This work PW91=PW91 (SP,non) 3.18 4.42 223

This work B88=P86 4.28 4.42 228
This work B88=P86 (SP) 3.28 4.42 225
This work B88=P86 (SP,non) 3.12 4.42 224

[2] CASSCF-FOCI 1.97 4.64 189
[3] CASSCF 1.16 5.18 161

[9] RGGA 3.94 4.52 234
[10] LSDA 4.92 4.26 267
[10] BLYP 3.58 4.38 239

[1] Expt. 3:14� 0:02 4.408 67 (83) 222:46� 0:66
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Following this, it is a vector which, in general, points to
different directions at different points in space. In order
to simplify the calculations in most implementations the
magnetization density is aligned to the axis of the highest
symmetry (z axis), which in the literature is called the
collinear approximation. In this approximation the elec-
tronic system can have a total magnetic moment even
in the case when the real system does not (e.g., closed
shell). Generally speaking, this is inconsistent because the
exchange-correlation potential in this case is not source
free as it should be because it is derived from a vector
potential [18]. This is corrected in the so-called noncol-
linear theory [16,19] where the magnetization density can
point to any direction in space. As it is shown in [16] for
closed subshell atoms the surfaces of constant magneti-
zation density in the noncollinear case are closed and
therefore any total magnetic moment does not appear. In
the collinear approximation these plains are perpendicu-
lar to the z axis. The difference in the total energy for
closed (sub)shells between both descriptions is very small.
The authors of Ref. [16] who investigate homologue ele-
ments of Pb in the periodic table claim that this should
also be valid for open shell atoms. The problem is that
these atoms are open shell systems only in a nonrelativ-
istic theory. In a relativistic description, however, these
are atoms with a closed subshell. Therefore this result
cannot be applied to all open shell systems. We show in
this paper that for real open shell systems the difference
in the total (bond) energy between the collinear and
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noncollinear description is about 0.1 eV per atom.
Moreover, we will show that DFT in their noncollinear
form can reproduce very well the experimental results.

Method.—The complete method will be published else-
where [20], therefore we give only a brief outline of it in
this Letter. Within the density functional method [4,14]
the total energy of a molecular system is given by the
expression

E �
XM
i�1

h j t̂t j i �
Z
VN� d3 ~rr �

1

2

Z
VH� d3 ~rr

� Exc��; ~mm� �
X
p>q

ZpZq
j ~RRp � ~RRqj

; (1)

with the density � and magnetization density ~mm which
are defined by
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Here ni are the occupation numbers, ~rr, ~RqRq are the elec-
tronic and nuclear coordinates, respectively, and�B is the
Bohr magneton. The index i runs over all occupied mo-
lecular orbitals M, which in our case are four-component
Dirac spinors. The four-component spin operator ~

 �
	
x;
y;
z
 is built from the two-component Pauli matrix
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#. The Dirac kinetic energy operator has the form (we use
atomic units throughout)

t̂t � c ~"" � ~̂pp~pp � c2	�� I
; (4)

where ~"" � 	"x; "y; "z
 and � are the four-component
Dirac matrices in the standard representation [21] and I
is the four-component unit matrix.
VN is the nuclear potential and VH the electronic

Hartree potential. Since the calculation of the Hartree
potential from the SCF density (2) is very time consum-
ing, we approximate � in (2) by a model density ~��. We
expand our model density into series of ‘‘atomic’’ multi-
pole densities centered on the nuclei. To determine the
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expansion coefficients we minimize the difference of
Hartree energies calculated from the SCF density � and
calculated from the model density ~��. This procedure
leads to small corrections to the total energy (1)
which are no longer linear, but quadratic in the difference
�� �~��22�:
Exc is the exchange-correlation energy functional. We

use in this work both local functionals, such as Slater X"
and relativistic local-density-approximation (RLDA) as
well as nonlocal, gradient corrected functionals from
Becke [6], and Perdew [5,7].

The variation of the energy functional (1) leads to the
relativistic Kohn-Sham (KS) equations in their noncol-
linear form for the molecular orbitals  i
�

t̂t � VN � ~VVH �
%Exc��; ~mm�

%�
��B� ~

 �

%Exc��; ~mm�

% ~mm

�
 i � &i i; i � 1; :::;M0: (5)

Here ~VVH is the Hartree potential from the model density and M0 � M is the number of molecular orbitals.
If the magnetization density is aligned to the symmetry (z) axis we can use the generalized spin densities [14]
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and the KS equations (5) can be written in the form
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A comparison of Eq. (6) with the nonrelativistic defi-
nition shows that the spin densities in the relativistic case
have a contribution from the large component as well as
from the small component. Because of this, an electron
cannot be fully spin polarized. This conforms with the
well-known statement that the spin is not a ‘‘good’’
quantum number in the relativistic theory.

Results and discussion.—For all calculations of Pt2
which are presented in Table I we used an optimized basis
set. In order to achieve this optimization we started with
numerical minimal basis functions for a neutral Pt atom.
In the second step we added the additional basis functions
6p1=2 and 6p3=2 from a calculation of a Pt atom with a
defined degree of ionization. We made several molecular
calculations with different partial occupation numbers for
the additional basis functions and find the minimum of
the total energy of Pt2 as function of the degree of
ionization. In the third step we fixed the partial occupa-
tion numbers for these two basis sets and optimized the
additional basis functions 5f5=2 and 5f7=2 in the same
way as the 6p shell basis functions. In this way we
increased the number of basis functions subshell by sub-
shell until the total energy change by further increase of
the number of basis functions was smaller than 0.01 eV. In
total we used the minimal basis plus 6p1=2, 6p3=2,
5f5=2, 5f7=2, 5g7=2, 5g9=2, 6d3=2, 6d5=2, 6f5=2, and
6f7=2 optimized functions. In order to check whether
this procedure leads to convergence of the correct total
energy, we also generated the basis for Li2 for which FEM
(finite elements method) values are available [23] using
this procedure. Our value for the total energy [20] is in
very good agreement with the FEM value.

Table I shows the bond energies, bond length, and
vibrational frequencies which we calculated from the
Morse potential [24] fitted to our calculated values of
the potential energy curve including the asymptotic value
for Pt2 for different exchange-correlation functionals. For
every combination we performed a non-spin-polarized, a
spin-polarized but collinear (SP), and a spin-polarized
noncollinear (SP,non) calculation. From an analysis of the
occupied orbitals on the minimum of the potential curve
we can see that the system has no open spins and there-
fore it behaves in the calculation around the minimum of
the potential energy curve as a closed shell system. This
means that we get essentially the same total molecular
energies for all three forms. This can be seen from the
very little change in the bond distance and the vibrational
frequencies. The mean change in the bond energy comes
213001-3
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from the larger total energy of the molecular system at
very large internuclear distances. In other words, the
difference comes from the atomic calculations for the
open shell system of the Pt atom. This agrees with other
calculations with and without spin polarization [25]. We
determinated the total energy of the Pt atom by calculat-
ing the Pt2 molecules at large internuclear distances
( > 40 a:u:). The calculations of the Pt atom with our
molecule program using the same grid (counterpoints
method) as used in the molecular calculations on the
minimum of the potential curve give a difference which
is much smaller then the uncertainty in the total energy
due the final number of used basis functions. The magne-
tization density even in the molecular calculations at
internuclear distances around the minimum was not
zero everywhere in the space. But it was distributed in
such a way that it essentially did not contribute to the very
integral quantity: the total energy. In contrast to this in
the calculations at large internuclear distances magneti-
zation density is not only nonzero but also leads to
changes in the total energy.

Recently the total energies for all atoms in the periodic
table for several density functionals with spin polariza-
tion in their collinear form were published [26]. In
our self-consistent, molecular calculation the total
energy of the Pt atom for the nonrelativistic LDA was
18436.4981 hartree which is only 1.2 mhartree smaller
than from [26]. We think the difference is due to the
spherical average of the total density and the magnetiza-
tion density in [26], whereas in our calculation the angu-
lar dependent density is used.

One can see from Table I that the LDA always gives
slightly too short bond lengths, the largest bond energies,
and, because of that, also the highest vibrational frequen-
cies. The very simple X" functional can reproduce all
three quantities much better. Both Perdew-Wang [5]
and Becke [6]-Perdew [7] combinations of exchange-
correlation functionals in their noncollinear form repro-
duce the experimental result quite well.

A comparison of the experimental results with those
from the many body theories shows quite large discrep-
ancies in the ground states properties of Pt2. We think that
the reason for these relatively poor results is the too small
active space set which cannot adequately represent the
contribution of the 5d shell of the Pt to the bond of the Pt
dimer. The difference between our calculations and the
calculations from literature could be explained by the too
small basis sets chosen and/or by the different form of the
density functionals [9,10].

Using the GGA density functionals in their noncol-
linear form in combination with a fully relativistic de-
scription it is possible to calculate the ground-state
properties for open shell systems. As a summary, one
can say that the fully relativistic density functional cal-
culations using the Becke 88 and Perdew 86 GGAs and
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with the noncollinear treatment of the spin magnetization
lead to very good results which are, in the case of Pt2,
even superior to ab initio quantum chemical data.
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