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Limiting Temperatures and the Equation of State of Nuclear Matter
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From experimental observations of limiting temperatures in heavy ion collisions we derive the
critical temperature of infinite nuclear matter Tc � 16:6� 0:86. Theoretical model correlations
between Tc, the compressibility modulus K, the effective mass m�, and the saturation density �s are
then exploited to derive the quantity �K=m��1=2��1=3

s . This quantity together with calculations employ-
ing Skyrme and Gogny interactions indicates a value of K in moderately excited nuclei that is in
excellent agreement with the value determined from giant monopole resonance data.
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FIG. 1. Limiting temperatures vs mass. Limiting tempera-
tures derived from double isotope yield ratio measurements
are represented by solid triangles. Temperatures derived from
thermal bremsstrahlung measurements are represented by open
squares. Lines represent limiting temperatures calculated
yield ratios and from slope measurements of particle
spectra. More recently the TAPS Collaboration has re-

using interactions proposed by Gogny (dashed line) [29] and
Furnstahl et al. [10,34] (solid line).
Improved knowledge of the nuclear equation of state
and a coherent picture of the relationship between the
properties of finite nuclei and bulk nuclear matter re-
mains a key requirement to understanding nuclear struc-
ture, heavy ion collisions, supernova explosions, and
neutron star properties [1–3]. Significant effort has been
devoted to the development of microscopic theoretical
models which can provide reliable mathematical formu-
lations of this equation of state [4–20]. Such calculations
are usually specified for symmetric nuclear matter, a
hypothetical system of equal numbers of neutrons and
(uncharged) protons interacting through nuclear forces.
Driven by the astrophysical problems and recent labora-
tory excursions into the region of exotic nuclei, the de-
pendence of the equation of state on neutron-proton
asymmetry has also become a subject of significant in-
terest [21–23]. In this Letter we employ data from ex-
perimental measurements of caloric curves in nuclear
collisions, together with systematic trends and correla-
tions derived from a number of theoretical investigations
of nuclear matter, to derive the critical temperature and
incompressibility of symmetric nuclear matter. The tech-
niques employed offer a natural method to extend such
investigations to more asymmetric systems.

In a recent paper measurements of nuclear specific
heats from a large number of experiments were employed
to construct caloric curves for five different regions of
nuclear mass [24]. Within experimental uncertainties
each caloric curve exhibits a plateau region at higher
excitation energy. As indicated in Ref. [24] the plateau
temperatures can be interpreted as representing the limit-
ing temperatures resulting from Coulomb instabilities of
expanded and heated nuclei. In Fig. 1 these limiting
temperatures from Ref. [24] are presented as a function
of mass. As previously noted, they are observed to de-
crease with increasing mass. This decrease with increas-
ing mass has long been predicted [25–34].

The results employed in Ref. [24] were based upon
temperature determinations derived from double isotope
0031-9007=02=89(21)=212701(4)$20.00 
ported temperatures determined from a new technique,
observations of ‘‘second chance’’ bremsstrahlung gamma
ray emission [35,36]. There are not yet sufficient data of
this latter type to construct caloric curves. However, in
each case studied with this technique the collisions lead
to excitation energies which are above those identified as
the starting points of the plateau regions identified in
Ref. [24]. Thus it is reasonable to compare the tempera-
tures determined from the thermal bremsstrahlung mea-
surements with the earlier limiting temperature values.
As seen in Fig. 1, the gamma temperatures and their mass
dependence are in excellent agreement with the earlier
results.

A large number of theoretical calculations of the criti-
cal temperature of semi-infinite nuclear matter (nuclear
matter with a surface) have been reported in the literature
[25–34]. The different nuclear interactions employed in
these calculations lead to large differences in the critical
temperatures derived. Values from 13 to 24 MeV are
reported in Refs. [25–34]. The limiting temperatures
plotted in Fig. 1 are well below these calculated critical
temperatures. This difference reflects finite size effects,
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Coulomb effects, and isospin asymmetry effects for the
finite nuclei studied.

A first order estimate of the magnitude of these com-
bined effects suggests that limiting temperatures in nu-
clei should be � 0:5 times the critical temperature of
nuclear matter [5]. Given the wide variation in the calcu-
lated values of Tc it is not surprising that large variations
result for the absolute values of limiting temperatures
calculated for finite nuclei.

Employing a variety of Skyrme-type interactions Song
and Su have previously noted a mass dependent scaling of
the Coulomb instability temperatures with the critical
temperature of nuclear matter (see Fig. 6 of Ref. [28]).
A similar scaling exists when other model interactions
are employed.

Mean values of Tlim=Tc for five different masses which
result from averaging the results of different calculations
[25–34] are shown in Fig. 2. The estimated uncertainties
are relatively small, � 6%. A useful parametrization of
Tlim=Tc, valid for 10 � A � 208, is �Tlim=Tc� � 0:597�
0:001 95A	 3:45
 10�6A2. For comparison, the figure
also presents ratios of Tlim=Tc which are expected to result
assuming only finite size effects as derived from a lattice
calculation [37] and the ratio of the nuclear binding
energy per nucleon along the line of beta stability to
the bulk binding energy per nucleon, 16 MeV. We have
employed the mean variation of Tlim=Tc with A, deter-
mined from commonly used microscopic theoretical
calculations, together with the five experimental limiting
temperatures reported in Ref. [24], to extract the critical
temperature of nuclear matter. In doing so we treat the
theoretical variation as if it were an experimental
uncertainty. Since the various interactions employed
have been ‘‘tuned’’ to other nuclear properties, we con-
sider this a reasonable approach. The results are presented
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FIG. 2. Theoretical variation of the ratio Tlim=Tc with mass
along the line of beta stability. The solid line indicates the
reference value of Tc. The short dashed line shows the effect of
finite size scaling derived from an Ising model [37]. The line
with alternating short and long dashes depicts the ratio of the
nuclear binding energy per nucleon to the bulk binding energy
per nucleon, 16 MeV. Points with uncertainties are derived
from the model calculations in Refs. [25–34].
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in Fig. 3. Averaging the individual results we find
16:6� 0:86 MeV, where the error represents 1 standard
deviation.

It is interesting to ask whether additional equation of
state information can be extracted from this result.
Blaizot et al. [9] have argued that the most effective
way to extract the incompressibility modulus of nuclear
matter from experimental data is by comparison with
microscopic calculations using giant monopole resonance
(GMR) data. The generally accepted best current value of
K � 231� 5 MeV has been determined in such a fashion
[38] by comparison of experimental centroids with those
calculated with Gogny interactions [9].We have adopted a
similar comparison procedure using the present result for
Tc determination.

We began by using a relation suggested by the work of
Kapusta [39] and Lattimer and Swesty [40] who have
pointed out that correlations between parameters used
to describe nuclear matter are such that a relationship
between the critical temperature, Tc, the incompressibil-
ity, K, the effective mass, m� ( � meff=m, where meff is
the nucleon effective mass and m is the nucleon mass),
and the saturation density, �s, may be written as

Tc � CT�K=m
��1=2��1=3

s ; (1)

where CT is a constant. Using this relationship, we have
determined the constant CT in this equation using pub-
lished theoretical values for Tc, calculated utilizing a
number of different microscopic interactions [4–20].
Results of calculations using interactions with 155<K <
384 MeV are depicted in Fig. 4. A least squares fit to
these data suggests a very slight decrease of CT with
increasing �K=m��1=2��1=3

s . Using the present value for
Tc together with Eq. (1) and the fit equation for the solid
line in Fig. 4 leads to

CT � 0:484� 0:074 MeV1=2 fm�1

and
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FIG. 3. Derived values of the critical temperature of sym-
metric nuclear matter. The mean value of 16.6 MeV is indicated
by the horizontal solid line. The range corresponding to
�1 standard deviation from this mean value is shown by the
thin dotted lines.
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FIG. 5. Compressibility modulus, K, as a function of
�K=m��1=2��1=3

s . The values obtained for Gogny interactions
of Ref. [9] are represented by open squares (� � 1

3 ) and open
triangles (� � 2

3 ). Symbols for each set are connected by thin
solid lines. Results using different Skyrme interactions are
represented by open circles. The other lines represent general-
ized calculations using Skyrme interactions [13] with � � 1

6
(short dashed line), � � 1

3 (dotted line), and � � 1 (alternating
dashes and dots).
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FIG. 4. The constant CT of Eq. (1), evaluated from various
microscopic calculations. CT is plotted against �K=m��1=2��1=3

s .
Derived values of CT are indicated by open diamonds. The
dotted horizontal line indicates the mean value of CT . The solid
line represents the linear least squares fit to the derived values.
Values of CT obtained from Skyrme and Gogny interactions
are further identified by open squares placed around the
diamonds.
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�K=m��1=2��1=3
s � 34:2� 5:34 MeV1=2 fm:

The saturation density, �s, is well established by charge
density measurements to be 0:16� 0:005 fm�3 [13]. The
standard deviation of the model values of �s from
0:16 fm�3, calculated with the different interactions, is
3.4%. Either of these uncertainties is very small com-
pared to other uncertainties in the determination.
Therefore Tc is a good measure of K=m�. K and m� are
not independent variables but are correlated [9,13]. For
Skyrme effective interactions Chabanat et al. have dis-
cussed the correlation between K and m� [13]. In that
work m� is written as

m� �

�
1	

m

8 �h2
��s

�
�1
; (2)

where

�s �
K � B� C�

D�1� 3
2��

(3)

and � is a parameter which ranges from zero to 1 and
controls the density dependence of the interaction. B, C, D
are parameters directly related to e1, the energy per
nucleon in infinite nuclear matter and eF, the Fermi
energy of infinite nuclear matter.

B � �9e1 	
3

5
eF; (4)

C � �9e1 	
9

5
eF; (5)

D �
3

20
�k2F: (6)

Here kF is the Fermi momentum.
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For a given K the ratio K=m� in Eq. (1) depends on the
choice of �, the parameter of the density dependent term.
(In the Gogny interactions of Ref. [9] this parameter
controlling the density dependent term is designated �.)
As a result, determination of K from K=m� is sensitive to
the choice of this parameter. For example, in Ref. [13] the
relation between K and m� is such that small values of �
dictate lower values of K. Also, for smaller values of �,
m� decreases as K increases while for larger �, m� in-
creases with increasing K (see Fig. 2 of Ref. [13]).

For comparison to the data we present in Fig. 5 a plot of
K vs �K=m��1=2��1=3

s , obtained using the Gogny interac-
tions from Ref. [9] and various Skyrme interactions. The
dashed lines in the plot show the trend of the generalized
Skyrme interactions for � � 1

6 , 1
3 , and 1 [13]. The solid

lines connect results for Gogny interactions with � � 1
3

and 2
3 [9]. As seen in the figure, a higher value of � leads

to a higher apparent K. It has been pointed out that
maintaining K in a ‘‘reasonable’’ range of 200–300 MeV
requires low values of � (or �) [5,9,13]. In particular, the
value of K � 231� 5 MeV derived from the GMR data
[38] was obtained by comparison of data for the breathing
mode energy of five different nuclei with energies calcu-
lated employing the Gogny D1 (� � 1

3 ), D1S (� � 1
3 ), and

D250 (� � 2
3 ) interactions [9]. For three of these nuclei

only the D1S interaction results were used. For the other
two a fit to the trend in energies calculated from the three
interactions was employed.

The value of �K=m��1=2��1=3
s derived from this work is

also indicated on the figure by the vertical line. We note
that this line intersects the calculated values essentially at
a point where the 1

6 Skyrme and 1
3 Gogny lines intersect.

The different slopes of the Skyrme and Gogny lines in the
212701-3
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figure lead to different uncertainties in the K value. Thus
employing Skyrme interactions with the � � 1

6 parame-
trization [13], K � 232� 22 MeV. Using Gogny inter-
actions with � � 1

3 [9] leads to K � 233� 39 MeV.
These results for K lead, respectively, to m� values of
0:674	0:18

�0:13 or 0:674	0:11
�0:09. The compressibility modulus

determined from the critical temperature in this manner
is then entirely consistent with that determined from the
GMR measurements. Higher values of � (or �) will lead
to higher apparent K. Thus for the Skyrme � � 1

3 line a
value of K � 252 would result. For the extension of the
Gogny � � 2

3 line, K � 242 would be obtained. The cal-
culated breathing mode energies are apparently less sen-
sitive to the value of the parameter of the density
dependent interaction.

In summary, from limiting temperature values ob-
tained in five different mass regions we have determined
a critical temperature of 16:6� 0:86 MeV for symmetric
infinite nuclear matter. This has been used to derive both
K, the incompressibility, and m�, the effective mass.
Extracted by comparison with the same interactions as
were employed to determine K from observations of the
giant monopole resonance at low excitation energy, the
value of K, obtained here from properties of nuclei at
moderate excitation energies, is found to be in excellent
agreement with that GMR result [38]. The precision for
the Tc measurement could be improved. However, given
the relative complexity of the collision dynamics in-
volved, the breathing mode measurements should remain
as the standard. Nevertheless, using newly available ra-
dioactive beams the determination of limiting and criti-
cal temperatures may play a significant role in providing a
means to establish the N=Z asymmetry dependence of the
compressibility modulus and other important nuclear
properties [41].
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