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Faraday Patterns in Bose-Einstein Condensates
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Temporal periodic modulation of the interatomic s-wave scattering length in Bose-Einstein con-
densates is shown to excite subharmonic patterns in the atom density through a parametric resonance.
The dominant wavelength of the spatial structures is primarily selected by the excitation frequency but
also affected by the depth of the spatial modulation via a nonlinear resonance. These phenomena
represent analogues of the Faraday patterns excited in vertically vibrated liquids.
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Patterns in such 2D system can be studied in the frame-
work of the Gross-Pitaevskii (GP) equation [10,11] for the
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The very essence of spontaneous pattern formation is
that a uniform state loses its stability against spatially
modulated states when an external control parameter is
varied. The dominant wavelength of the instability and
the symmetries of the selected patterns are intrinsic
properties of the system, independent of (or only weakly
dependent on) initial or boundary conditions. Spon-
taneous pattern formation is widespread in natural sys-
tems and in laboratory experiments [1], however not yet
suggested for the most recently created state of matter,
the Bose-Einstein condensate (BEC) [2].

In this Letter, we report on the spontaneous symmetry
breaking and the appearance of patterns and quasipat-
terns in a BEC subjected to a temporal modulation of the
atomic s-wave scattering length. We show analytically
and numerically that the dominant wave number of the
patterns is selected by the excitation frequency through a
dispersion-induced mechanism, and that the resulting
patterns resemble those observed in the Faraday instabil-
ity on a free surface of a fluid subject to oscillatory
vertical acceleration [3]. We note that we deal with the
periodic modulation of the scattering length of the con-
densate, in contrast to [4], where the periodic modulation
of the trap parameter was investigated. Experimentally
periodic modulation of the scattering length is achiev-
able, e.g., via the Feshbach resonance [5], via the inter-
action with laser light [6], or via external dc electric fields
[7]. In low dimensional condensates, such as the ones we
consider here, the scattering length can also be tuned by
changing the trap frequency corresponding to the tightly
confined direction [8].

We consider a trapped BEC with atomic s-wave scatter-
ing length a�t� � �aa�1� 2� cos�2!t�� periodically modu-
lated in time around its mean value �aa. We assume a
pancake-type trapping potential Vtrap�x; y; z� �

1
2!

2
zz2 �

V�x; y�, with V�x; y� � 1
2!

2
?�x

2 � y2� and !z � !?, so
that the BEC can be regarded as a two-dimensional (2D)
system [9] extended in the weakly confining plane �x; y�.
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BEC mean field  �r; t�, r � �x; y�, which, using suitably
normalized variables, can be written as
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� 	r2 � V�r� � c�t�j j2 : (1)

Here c�t� � a�t�= �aa � 1� 2� cos�2!t�. In the absence of
modulation �� � 0� the BEC is assumed to be in its
ground state  �r; t� �  0�r�e	i�t, which can be computed
numerically [11]. Since we study the pattern forming
instabilities on a spatial scale much smaller than the
size of the condensate, we consider the limiting case of
a flat potential V�r� � 0, which leads to � � 1 and
 0�r� � 1 with a proper scaling of space and time in
Eq. (1). We show below numerically that the pattern
forming instability found in the flat trapping potential
persists in harmonic trapping potentials.

The spatially homogeneous, temporally periodic solu-
tion of Eq. (1) in the flat potential limit is  �r; t� �
 hom�t� � exp�	it	 i �! sin�2!t��. In order to determine
whether the spatially uniform periodic modulation can
induce a spontaneous spatial-symmetry breaking of this
homogeneous state, we perform a linear stability analysis
against spatially modulated perturbations. Setting in
Eq. (1)  �r; t� �  hom�t��1� w�t� cos�k 
 r��, where w�t�
is the complex-valued amplitude of the perturbation, one
obtains for u � Re�w� the following Mathieu equation:

d2u=dt2 � ��2�k� � 4k2� cos�2!t��u � 0; (2)

where ��k� � k
��������������
k2 � 2

p
is the dispersion relation of the

perturbations in the absence of driving and k2 � k 
 k.
The Floquet exponents � � ��k;!; �� for Eq. (2) de-
scribe the stability of the homogeneous BEC state. An
instability with wave number k arises on the neutral
stability curve � � �N�k;!�, implicitly defined by the
relation Re��k;!; �� � 0, and the homogeneous state
is unstable if Re� > 0. The neutral stability curve of
Eq. (2) is composed of an infinite series of resonance
tongues located around the wave numbers k � k �
 2002 The American Physical Society 210406-1
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parametric resonance condition ��kn� � n! between the
external forcing frequency 2! and the natural frequency
� of the system, Fig. 1(a). This wave number selection is
analogous to the one generally found in parametrically
forced spatially extended systems, such as in the Faraday
instability of vertically vibrated fluids [12].

Numerical simulations for the flat potential were per-
formed to test the parametric instability of the homoge-
neous BEC state. Equation (1) was integrated using a
pseudospectral split-step technique in a square spatial
domain with periodic boundary conditions. Figure 2
shows snapshots of the spatial atom density j �r; t�j2

(upper row) and of the atom momentum density
j~  �k; t�j2 (lower row) where the tilde denotes spatial
Fourier transformation. The figure shows the growth of
resonant modes, located on concentric rings in momen-
tum space in agreement with the linear stability analysis.
First the main resonant ring in momentum space appears,
which corresponds to transient quasipatterns in physical
space, see Fig. 2(a). Further, see Fig. 2(b), higher-order
resonance rings appear in momentum space, which cor-
respond to the higher-order resonance tongues of Fig. 1(a).
These structures appear transiently due to the conserva-
tive nature of the GP Eq. (1). For a long time one observes
heating and eventual destruction of the condensate,
Fig. 2(c). This destruction, which we observe in all our
2D numerics, contrasts with the everlasting periodic re-
vivals of the spatial modulation in the 1D case [13].

In order to determine the intrinsic symmetries of the
parametric patterns, we investigated weakly dissipative
BECs, since the inclusion of dissipative terms, which
describe damping mechanisms of trapped BECs, can be
expected to lead to the selection of stationary patterns
with a well-defined symmetry. We adopt a phenomeno-
logical description of dissipation [14], by including damp-
ing in Eq. (1) and obtain the parametrically driven,
FIG. 1. Resonance tongues of the parametric instability for
the conservative � � 0 (a) and dissipative � � 0:03 (b) GP
equation for ! � 0:3�. Shaded domains indicate the regions
where the uniform condensate state is unstable, as following
from Floquet analysis of Eqs. (2) and (4). The dashed curves
show the neutral stability curve for the first resonance tongue
as given by Eq. (5). Notice that the atomic interaction remains
repulsive for �< 0:5, and we will limit our analysis to this
regime.
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damped GP equation,
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� �1	 i���	r2 	�� j j2� 

� 2� cos�2!t�j j2 ; (3)

where � � 1 is the chemical potential. The damping,
described by the adimensional coefficient �, ensures an
evolution towards the ground state in the absence of para-
metric driving (� � 0). Also the damping sets a nonzero
threshold value for the parametric instability, and re-
moves the degeneracy of threshold values for higher
resonance tongues. Analogously to Eq. (2), we find in
the dissipative case a damped Mathieu equation:

d2u=dt2 � 2��1� k2�du=dt�

��1� �2��2�k� � 4k2� cos�2!t��u � 0: (4)

The neutral stability curves obtained from a Floquet
analysis of Eq. (4) are shown in Fig. 1(b). An approximate
expression for the neutral stability curve of the first
resonance tongue, as calculated by a perturbative analy-
sis, is

�N�k;!� �

��������������
2� k2

p

k

���������������������������������������������������
�!	��2 � �2�1� k2�2

q
: (5)

Numerical integration of Eq. (3) with small dissipation
� � 0:03 shows the formation of stationary spatial pat-
terns with different symmetries, as shown in Fig. 3. In
momentum space, only several modes corresponding to
the first resonance tongue survive due to nonlinear com-
petition. The pattern symmetries depend on the excitation
frequency: for large modulation frequencies typical pat-
terns are squares, Fig. 3(a), or quasiperiodic patterns with
eightfold symmetry, Fig. 3(b). For moderate frequencies
FIG. 2. Evolution of patterns in parametrically driven BECs,
as obtained by numerical integration of Eq. (1) in a flat
potential with periodic boundary conditions, for � � 0:2 and
! � 1:5�. Upper row: distribution in physical space; bottom
row: distributions in momentum space. The snapshots were
take at times: (a) t � 100, (b) t � 200, (c) t � 300. The zero
component in momentum space pictures is removed.
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FIG. 3. Patterns in dissipative BECs, as obtained by numeri-
cal integration of Eq. (3) in a flat potential with periodic
boundary conditions for � � 0:2, � � 0:03, and (a) ! �
1:5�, (b) ! � 1:5�, and (c) ! � 0:5�. Upper row: distribution
in physical space; bottom row: distributions in momentum
space. The zero component in momentum space pictures is
removed.
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FIG. 4. Intensity of nonhomogeneous (modulated) spatial
modes in dissipative BECs, as obtained by numerical integra-
tion of Eq. (3) in a Galerkin mode expansion. The eigenfre-
quency of the lowest modulated mode k � 0:1� 2� is
��k� � 0:3095�. The parameters are � � 0:05 and � � 0:25.
The dashed lines are given by Eq. (7). Note the bistability
between the homogeneous state (lower branch of circles), and
modulated state (upper branch) in some region of modulation
frequency (between ! � 0:2� and ! � 2:8� in this case).
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rhombic patterns are favored, Fig. 3(c). These results have
been independently tested by direct integration of a set of
amplitude equations derived from Eq. (3) using a
Galerkin decomposition (see, e.g., [15]). We note that
the symmetries of the observed patterns are those match-
ing the parametric resonance condition ��kn� � n!
via the following scenario: (i) In the linear stage of
the instability a set of modes with wave vector
fk�i�;	k�i�gi�1;2;... (jk�i�j � k1) lying on the first resonant
ring are excited; (ii) Owing to nonlinear interactions,
passive modes with wave vector k�i;j� � k�i� � k�j� are
subsequently excited, with frequency 2!. Among these
wave vectors are some matching the parametric reso-
nance condition associated with the second ring (jk�i;j�j �
k2). In the case of patterns composed of only two funda-
mental wave vectors, e.g., �k�1� and �k�2� with an
angle  between them, the resonance condition jk�1;2�j �
k2 is  � 2 arccos�k2=2k1�. For small driving frequencies
(!2 � 1),  �

���
3

p
!�O�!3�, and for large !,  �

�=2�O�1=!�. These considerations make our observa-
tions of square patterns at large driving frequencies, and
of rhombic patterns for moderate and small frequencies
(Fig. 3) plausible. Also, we observe that the dominant
angle of the rhombic pattern is dependent on the excita-
tion frequency. However, we were unable to ascertain
definitely the above relations between the frequency of
excitation and the angle: the local angle of the rhombic
pattern generally varies in space, Fig. 3(c), and also in
time, thus it is not strictly defined.

The difficulties in determining the symmetries of the
patterns occur possibly due to a nonlinear spatial reso-
nance. To give analytical evidence of this nonlinear reso-
nance, an amplitude equation for the simplest pattern
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(a nearly resonant, weakly nonlinear roll) was derived
by a standard multiple scale expansion (for details, see
[16]). We expand the condensate mean field  �x; t� �
 hom�t��1� w�t� cos�kx� �

P
1
n�2 "

nwn�x; t��, assume that
the modulation depth of the pattern is small,w�t� � O�"�,
" being a small parameter, and use the following parame-
ter scalings, as suggested by the linear stability analy-
sis: ! � ��k� �O�"2�, � � O�"2�, and � � O�"2�. A
slow time # � "2t is defined and all coefficients of the
expansion are assumed to depend on both t and # (@t !
@t � "2@#). Substituting the above expansion and scal-
ings into Eq. (3), and equating equal powers in ", at
leading order one has w�t� � �1	�=k2�R�t�ei!t�
�1��=k2�R��t�e	i!t, where the complex amplitude R
satisfies a complex Landau equation with broken phase
symmetry:

dR=dt � 	�c1 � ic2�R� ic3R� 	 ic4jRj2R; (6)

where c1 � ��1� k2�, c2 � �!	��, c3 � �k2=�, and
c4 � �3� 5k2�=�. A relevant measurable quantity is the
time averaged occupation of the nonhomogeneous (ex-
cited) modes of the condensate which, at leading order, is
$mod � 2hj 12w�t�j

2i � �1��2=k4�jRj2. The steady solu-
tion ( dR=dt � 0) of Eq. (6) results in:

$mod �

�
1�

�2

k4

�

�
	��!	�� �

��������������������������������������������������
��k2�2 	 ����1� k2��2

p
3� 5k2

: (7)

which shows the occurrence of the nonlinear resonance.
We tested (7) by a numerical analysis of Eq. (3) in
1D using a Galerkin expansion  �x; t� �  hom�t� �P
M
n�	M gn�t�e

inkx, with k fixed and M a truncation index,
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FIG. 5. Density distributions of trapped BECs, as obtained by
numerical integration of Eq. (3), in a parabolic potential.
Snapshot of a transient pattern, in physical space (left) and in
momentum space (right): (a) in a conservative BEC (� � 0);
(b) in a dissipative BEC (� � 0:03). Parameters: ! � 1:5� and
� � 0:2 (� � 0:4) for conservative (dissipative) case. The trap
frequency at these conditions was equal to !trap � 0:08�. The
horizontal and vertical dark lines in momentum space are the
artifacts of numerical grid.
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and calculated the time averaged intensity of the spatial
modulation $mod �

P
n�0hjgn�t�j

2i as a function of the
excitation frequency. Figure 4 shows the calculated non-
linear resonance: the dependence of the eigenfrequency
of the spatial mode on the modulation depth is apparent,
and corresponds well with that given by Eq. (7) (dashed
lines). In the 2D case this nonlinear resonance is expected
to complicate pattern selection since the symmetry be-
comes dependent not only on the driving frequency but
also on the excitation amplitude through the spatial
modulation depth of the condensate density.

Finally, numerical simulations were performed for the
case of 2D condensates with a harmonic potential trap
(Fig. 5) in order to show the persistence of the pattern
forming instability under experimentally relevant condi-
tions. The dominant wavelength, as calculated from the
momentum distributions, corresponds well to the analyti-
cal value predicted by Floquet analysis of Eqs. (2) and (4).
In physical units, the simulation corresponds to a density
N � 105 of 87Rb atoms in a magnetic trap of frequency
!? � 2�� 10 s	1. This results in a condensate size
(diameter at half the density maximum) equal to 50 �m
with a mean scattering length �aa � 5:2 nm.

In conclusion, we have shown that spontaneous pattern
formation, a very general phenomenon studied in differ-
ent fields of nonlinear science, occurs also for the newly
created state of matter, the BECs. Pattern formation can
be achieved by modulation of the atomic scattering
length, a mechanism that bears a close connection with
the formation of spatial patterns on the surface of a
vibrating fluid. We studied 2D condensates, in which the
dynamics occurs in the plane transverse to the tight con-
finement direction, and found squares, rhombi, and octa-
gons as typical patterns. We also revealed the existence of
a nonlinear spatial resonance, a phenomenon which may
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lead to the expectation of bistable localized structures,
such as those found, e.g., in vibrated fluids [17] or in
nonlinear optical resonators [18]. We thus envisage that
such localized structures can be excited in parametrically
driven BECs by periodic modulation of the interatomic
scattering length.
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Phys. Rev. Lett. 83, 1715 (1999); J. J. Garcı́a-Ripoll and
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