VOLUME 89, NUMBER 21

PHYSICAL REVIEW LETTERS

18 NOVEMBER 2002

Torus Quantization for Spinning Particles
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We derive semiclassical quantization conditions for particles with spin. These generalize the
Einstein-Brillouin-Keller quantization in such a way that, in addition to the Maslov correction, there
appears another term which is a remnant of a non-Abelian geometric or Berry phase. This correction is
interpreted in terms of a rotation angle for a classical spin vector.
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The WKB (or short-wavelength) approximation is a
powerful tool in many branches of physics, which also
provides a particularly transparent view on the physical
quantities involved. Considering recently renewed inter-
est in spin-related phenomena, e.g., in atomic and con-
densed matter physics, a semiclassical approach to the
Pauli and Dirac equation will potentially prove useful. In
this Letter, we present a semiclassical theory for spinning
particles which not only yields explicit quantization con-
ditions but also shows that classical equations of motion
for a spin vector can provide valuable insight into genu-
inely quantum mechanical properties.

The semiclassical analysis of the Dirac equation was
started by Pauli [1] who showed that the rapidly oscillat-
ing phase of a WKB-like ansatz has to solve a relativistic
Hamilton-Jacobi equation. Later Rubinow and Keller [2]
related the amplitude of the semiclassical solution to
classical spin precession (i.e., Thomas precession [3]).
So far, however, all these efforts did not result in general
semiclassical quantization conditions as they were put
forward by Keller for the Schrodinger equation [4]. In
this Letter, we present the main steps in the derivation of
such conditions, finally leading to Eq. (16) below. The
crucial point in our approach is to prove the existence of a
new constant of motion for integrable systems with spin,
namely, the latitude of the classical spin vector with
respect to a locally varying direction. We illustrate our
method for the relativistic Kepler problem, thus shedding
some light on the amazing success of Sommerfeld’s
theory of fine structure [5].

The problems we are going to discuss have to be
viewed in the more general context of semiclassical meth-
ods for multicomponent wave equations. These have been
a topic of constant interest over the past decade both for
their physical applications and the mathematical struc-
tures behind them [6-9]. In a seminal article, Littlejohn
and Flynn [7] summarized some of the previous efforts in
this direction, stressed the importance of geometric or
Berry phases in this context, and developed a general
quantization scheme. Their method, however, does not
cover situations in which the so-called principal Weyl
symbol of the Hamiltonian has (globally) degenerate
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eigenvalues. But this problem shows up for the Dirac
equation, as we explain below. It was emphasized by
Emmrich and Weinstein [8] that in such a situation in-
tegrability of the so-called ray Hamiltonians [which in
our case are given by H™ and H~ defined in Eq. (6)
below] is not a sufficient condition that allows for an
explicit semiclassical quantization. We overcome this
problem for the Dirac and Pauli equation by identifying
the aforementioned latitude of the classical spin vector as
a constant of motion, thus effectively reducing the non-
Abelian geometric phase to an ordinary phase factor. The
new term in the quantization conditions then depends
only on the motion on the fixed parallel of latitude, i.e.,
on the rotation angle for the classical spin vector.

Let us now first summarize the determination of semi-
classical wave functions for the Dirac equation. Details
can be found in [2,9,10]. Consider the stationary Dirac
equation Hp¥ = EW with Hamiltonian

Hp = ca[gv - ;A(x)i|+ﬁmc2 + edp(x) (1)

defined on a suitable domain in L2(R?) ® C*. It describes
the motion of a particle with mass m, charge e, and spin %
in electromagnetic potentials ¢ and A. The Dirac algebra
is realized by the 4 X 4 matrices

_ 0 o _ ]12 0
a—(o_ 0) and ,8—(0 —]12>’ 2)

where o is the vector of Pauli matrices and 1, denotes
the 2 X 2 unit matrix. We make a semiclassical ansatz of

the form
Ak e(i/S(x)
W(x) = [z(—.) ak<x>} 3)

k=0

with a scalar phase function S and spinor-valued ampli-
tudes a,. Inserting this ansatz into the Dirac equation and
sorting by orders of /i in leading order, one finds

[Hp(VS, x) = Elag = 0 4

with the matrix-valued function
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Hp(p, x) = ca[p - ;A(x)}L,Bmc2 +ed(x), (5

on classical phase space. The system (4) of linear equa-
tions has a solution with nontrivial a, only if the expres-
sion in square brackets has an eigenvalue zero, i.e., if S
solves one of the two Hamilton-Jacobi equations
H*(VS, x) = E with classical Hamiltonians

H*(p,x) =ed = \/c2<p - §A>2+m2c4 (6)

for particles with positive and negative kinetic energy,
respectively. From standard Hamilton-Jacobi theory, see,
e.g., [11], we conclude that the rapidly oscillating phase of
the wave function (3) can be determined by integration
along solutions [P (), X+ (¢)] of Hamilton’s equations of
motion generated by the Hamiltonians (6). Locally, we
have P.(t) = VS*[X.(?)], and thus

550 = 5°0) + [ Peax., )
y
where we denote by y = X (0) the (arbitrarily chosen)
starting point of integration. If we set § := P..(0), we can
also  write  [P.(1), X+ (1)] = ¢},.(§y) with the
Hamiltonian flows ¢/,.. The eigenspaces corresponding
to the eigenvalues H*(p, x) of Hp(p, x) have dimension
two and we denote by V.(p,x) the 4 X 2 matrices of
orthonormal elgenvectors 1e V Ve,=1,=VvViv_,

vivi=0=viv,, and V.Vl + V_VI = 1,; see [10]
for details. For concreteness we now seek a semiclassical
wave function corresponding to the classical dynamics
with H* and, in order to simplify notation, drop the in-
dex “+”. Since Eq. (4) is a matrix equation, it does not
only require S to solve the Hamilton-Jacobi equation, but
also ag to be of the form ay(x) = V(VS, x)b(x) with a
C?-valued b.

An equation for b can be derived from the next-
to-leading order equation, obtained when inserting the
semiclassical ansatz (3) into the Dirac equation, by multi-
plication with VJr from the left, cf. [2,9,10],

(V,H)V, b + %UB(VXS, x)b + va[v,,H(vxs, x)]b =0,

®)
ec e ec

B(px):=—|p——A|XE—-——B. (9
(p. x) e(e + mc2)<p c ) € ©)
Here we used the abbreviation & 1= \/(cp — eA)? + m2c*
and E(x) = —V¢(x) and B(x) =V X A(x) denote the
electric and magnetic fields, respectively. Viewed as an
equation along the orbit ¢4 (& y), the first term in (8)
constitutes a time derivative along the classical transla-
tional dynamics which we denote by a dot. The solution

of (8) with vanishing B is known to be given by 1/detax,

see, e.g., [4], and thus the ansatz b = 1/det u leaves us

with the spin transport equation
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i+ S OB (E N =0 (10)

The solution of (10) can be written as u(r) = d(&, y, r)u(0)
with an SU(2)-matrix d(§, y, ). We explicitly indicate the
dependence on the initial point (§ y) of the classical
trajectory along which we integrate until time ¢.
Through the covering map ¢:SU(2) — SO(3), we can
associate with the spin transporter d a rotation matrix
R(& y, 1), and one easily verifies that s(¢) := R(§, y, 1)s(0)
solves the spin precession equation

$ = BloyE ] Xs (11)

on the two-sphere S? (i.e., s € R, [s| = 1). This is the
equation of Thomas precession [3] thus emerging from a
semiclassical analysis of the Dirac equation. It turns out
that all properties of the semiclassical wave function ¥ ~
agexp(£S) can be determined from the solution ¢4, (£, y)
of Hamilton’s equations of motion and the solution s(z) of
Eq. (11). Thus, the skew product

YU[E y,5(0)] :==[¢}(& y). R(E y, 0)s(0)],  (12)

which defines a flow on the extended classical phase space
R>? X §2, should be considered as the classical dynamical
system corresponding to the Dirac equation; cf. [12,13].
The key question in semiclassical quantization is now
whether it is possible to find a single-valued wave func-
tion W ~ agexp(;S) which solves the above equations.
Let us briefly recall the procedure in the spinless case [4].
In standard semiclassics for the Schrodinger equation,
one invokes integrability of the classical flow ¢%;: Besides
the classical Hamiltonian H =: A, there are d — 1 fur-
ther conserved quantities, A,, ..., A; (for a system with d
degrees of freedom; we only specialize to d = 3 later)
with mutually vanishing Poisson brackets, {A;, A;} = 0.
Then the theorem of Liouville and Arnold, see [11],
chapter 10, guarantees that a (compact and connected)
invariant level set {(p, x) | A = const} has the topology of
a d-torus T¢ on which the flows <;l>f41, e, ¢>gd generated by
Ay, ..., A, commute. By integration along the flow lines
of ¢}, ..., ¢, —analogous to the integration along ¢},
in (7) — this allows for a definition of the phase function
S which is unique up to the contributions of noncontrac-
tible loops. Demanding single-valuedness of the semi-
classical wave function W~ gyel/?S yields the
Einstein-Brillouin-Keller quantization conditions

f pdx = 27Tﬁ<nj + ﬂ) n; €7, (13)
C 4

where {C ; | j=1,...,d} denotes a basis of noncontrac-
tible loops on the torus characterized by the action vari-
ables [; = 9§C pdx. The number u; € {1,2, 3,4} is the
Maslov 1ndex see [14], of the cycle C; which, roughly
speaking, counts the number of points along C; at which
the prefactor ,/det‘;—)yc becomes singular. All these terms
also appear in the situation with nonzero spin, and we
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now have to examine how the spin contribution modifies
this picture.

When we include the spin contribution d(§, y, t), the
situation becomes more complicated and integrability of
¢}, will, in general, not be a sufficient condition to allow
for an explicit semiclassical quantization. This can be
seen as follows: Transporting the spinor-valued ampli-
tude u along a closed path C; on a Liouville- Arnold torus
the initial and final value, u; and us, respectively, differ
not only by a phase but are related by an SU(2) trans-
formation, u; = d;u;, d; € SU(2). Mathematically
speaking, we are con51der1ng a connection in a C? bundle
with SU(2) holonomy; i.e., the semiclassical wave func-
tion acquires a non-Abelian Berry phase. If there was
only one such loop, as in a system with one translational
degree of freedom, we could choose u; to be an eigenvec-
tor of d;, thus reducing the SU(2) holonomy to a simple
phase factor. However, for d = 2 degrees of freedom, this
is impossible since the holonomy factors for different
loops are, in general, given by noncommuting elements
of the holonomy group SU(2). This is a general problem in
semiclassics for multicomponent wave equations with
globally degenerate eigenvalues of the principal symbol,
as was emphasized in a general setting by Emmrich and
Weinstein [8].

In our situation of semiclassics for spinning particles,
we solve this problem by imposing additional conditions
on the “field” B, which generates the classical spin
precession (11). From a physical point of view it is not
surprising that we need a stronger condition than just
integrability of the translational dynamics ¢%;; since we
identified the skew product (12) as the classical dynamics
corresponding to the Dirac equation, we should also say
under which circumstances we want to call the spin
dynamics (or rather the combination of translational
and spin dynamics) integrable. We do this by the follow-
ing definition.

Definition: The skew product Y, is called integrable,
if (i) the underlying Hamiltonian flow ¢, is integrable in
the sense of Liouville and Arnold and (ii) the flows

d)A , e d)A can also be extended to skew products Y
on de x §2 (Y!, = Y.,) with fields B; fulfilling

Condition (14) plays the same role as the condition
{A;, A} = 0 does in the scalar case; it guarantees that
all skew products Y’1 commute [15]. Under these con-
ditions, we are able to prove the followmg theorem.
Theorem: If the skew product flow Y, is integrable, the
combined phase space R* X §? can be decomposed into
invariant bundles T , = d over Liowville-Arnold tori T¢
with typical fiber S'. The bundles can be embedded in
T X 8% such that the fibers are characterized by the
latitude with respect to a local direction n(p, x), i.e.,

To={pxs) €TIXS| s, npx)]=0. (15)
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The proof of this theorem will be given elsewhere [15].
The geometry of the invariant sets 7 , is illustrated in
Fig. 1: a Liouville-Arnold torus is sketched as a 2-torus; at
two different points we show the attached sphere together
with the local axes n and a corresponding parallel of
latitude.

If the skew product flow Y/, is integrable, the theorem
allows us to construct semiclassical wave functions which
imply generalized quantization conditions involving the
spin degree of freedom. We briefly sketch the construction
and then state the quantization conditions.

As in the case without spin, we define the semiclassical
wave function by integration along the flow lines of
&4, ¢4, In addition, we choose the C2-valued
part u such that it is an eigenvector of on(p, x) at each
point of the Liouville- Arnold torus T¢. (This is possible
only if the skew product Y/, and not just the Hamiltonian
flow ¢, is integrable.) Then the semiclassical wave
function is unique up to the contribution of noncontrac-
tible loops on T¢. Transporting a classical spin vector
along such a loop C; by a combination of the (commut-
ing) skew products YC“, ..., Y%, one finds that it is rotated
by an angle «;, while integrability of Y[, ensures that it
stays on the same parallel of latitude. Consequently, the
semiclassical wave function is multiplied by a phase
factor e¥/®/2, the sign depending on whether we have
chosen u to be an eigenvector of on with eigenvalue +1
or —1. Demanding single-valuedness of the wave func-
tion, the total phase change when moving along a loop C;
has to be an integer multiple of 27, yielding the quanti-
zation conditions

f pdx—277'ﬁ<n + 2
C, 4

J

+m > (16)

ﬁ
S
n(p,x)

7

FIG. 1. The invariant manifolds T(, of Y!, [see (15)] are given
by tori T¢ to which at each point is attached the set of all points
on the two-sphere S? sharing a fixed latitude # with respect to a
varying axis n(p, x).
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where, in addition to the terms in (13), the spin contribu-
tion with the spin quantum number m, = * % enters.

We remark that analogous quantization conditions can
be derived for the Pauli equation [15]. There we can also
choose to describe particles with arbitrary spin s € 1N,
by replacing the Pauli matrices o with a higher dimen-
sional irreducible representation of $11(2). This changes
neither the corresponding classical system (which is al-
ways given by a skew product on R?¢ X $?) nor the
construction of the semiclassical solutions; only in the
quantization conditions (16) the spin quantum number
then takes the values —s, —s + 1, ..., s.

We conclude by illustrating these new quantization
conditions for a famous example, namely, Sommerfeld’s
fine structure formula [5]. To this end, we have to quantize
the relativistic Kepler problem with classical
Hamiltonian

2
H(p,x) = — Iic_l +4/2p? + m2ct, (17)

The problem can be transformed to action and angle
variables, see, e.g., [5], and the new Hamiltonian depends
only on the two action variables I, and L. Here I, denotes
the action variable corresponding to a radial cycle (e.g.,
from perihelion to aphelion and back), and L is the
modulus of angular momentum L =x X p. In 1916
Sommerfeld quantized this system using the old quan-
tum theory, since quantum mechanics was still to be
invented, not to think about spin or the Dirac equation.
Accordingly, he chose the quantization conditions

I,=rfn, and L = I, (18)

with integers n, € Ny and [ € N. More than ten years
later it was confirmed that the energy levels resulting
from these conditions are exactly the same as one finds
by solving the corresponding Dirac equation [16,17].
This is insofar surprising as the Dirac equation not only
includes relativistic effects, but also takes into account
spin-orbit coupling, which Sommerfeld could not know
about. Quantizing the problem with the new conditions
(16) yields

- L &) - < I, 2)

I, ﬁ(n,+2_4ﬂ_ and L hl+2_477_,
(19)
with integers n, and / and a Maslov contribution of %
for both variables. For the spin rotation angle a;, we
find a; = 27 for any spherically symmetric system
[15]. Intriguingly, for the relativistic Kepler problem, «,
is also given by 2. Therefore, the conditions (16) and
Sommerfeld’s method yield the same values for /, and L,
thus leading to the same energy levels. A careful analysis
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of the values that n, and [ can assume (one finds n, = 0
and [ = % ¥ %) shows that with the semiclassical quanti-
zation scheme developed here one also obtains the correct
multiplicities, which Sommerfeld was unable to extract
with his method.

Summarizing, we have derived semiclassical quantiza-
tion conditions for particles with both translational and
spin degrees of freedom. In order to deal with the non-
Abelian Berry phases, which arise in this context, we had
to extend the notion of integrability to the combined
dynamics of classical translational and spin degrees of
freedom. As a consequence, we identified the latitude of
the classical spin vector as a constant of motion which
allowed us to derive general quantization conditions.
Applying the method to the relativistic Kepler problem
we found that, by a freak of nature, Sommerfeld obtained
the correct energy levels of the Dirac hydrogen atom
because, roughly speaking, the corrections due to wave
mechanics (the Maslov term %) and that due to the spin of
the electron cancel in this particular problem.
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