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Effective Size of Certain Macroscopic Quantum Superpositions
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Several experiments and experimental proposals for the production of macroscopic superpositions
naturally lead to states of the general form j�1i

�N � j�2i
�N , where the number of subsystems N is very

large, but the states of the individual subsystems have large overlap, jh�1j�2ij
2 � 1� �2. We propose

two different methods for assigning an effective particle number to such states, using ideal
Greenberger-Horne-Zeilinger states of the form j0i�n � j1i�n as a standard of comparison. The two
methods are based on decoherence and on a distillation protocol, respectively. Both lead to an effective
size n of the order of N�2.
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jGHZni � ���
2

p 	j0i�n � j1i�n
: (2) states is in the spirit of quantum information, viewing
multiparty entanglement as a convertible resource.We ask
It was pointed out already in 1935 by Schrödinger [1]
that quantum mechanics predicts the existence of super-
positions of macroscopically distinct states. The observa-
tion of the related quantum interference effects is very
difficult because of environment-induced decoherence.
Nevertheless several methods for producing and verify-
ing macroscopic superpositions have been proposed, in
systems ranging from superconductors [2] over Bose-
Einstein condensates (BECs) [3,4] and optomechanical
systems [5] to small cantilevers coupled to superconduct-
ing islands [6]. Recently there have even been the first
experimental demonstrations of the superposition of dis-
tinct macroscopic current states in superconducting quan-
tum interference devices (SQUIDs) [7].

The states produced in such proposed experiments can
often be described to a good approximation by

j i �
1����
K

p 	j�1i
�N � j�2i

�N
; (1)

with K � 2� h�1 j �2i
N � h�2 j �1i

N . Here j i is a
state of N two-level systems (qubits). The individual
qubits could be seen as simple models for many different
physical systems, including the atoms in a BEC inside a
double-well potential [3], atoms in two internal states, or
the Cooper pairs in a SQUID (which can flow in a clock-
wise or an anticlockwise direction).

The essential point for our present discussion is that the
states j�1i and j�2i are not necessarily orthogonal. In
fact, we will study the case where jh�1 j �2ij

2 � 1� �2

is very close to 1 (� is small). Note that in spite of this the
overlap between the two terms in (1) can be very small for
large N, since it is given by jh�1 j �2ij

2N � 	1� �2
N ,
which is well approximated by e�N�

2
for small �.

We investigate how states of the form (1) compare to
ideal Greenberger-Horne-Zeilinger (GHZ) states of the
form

1
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States of the form (2) can be produced to good approxi-
mation in quantum optical systems, including atoms in
cavity quantum electrodynamics [8], trapped ions [9],
and photons from parametric downconversion [10]. So
far, particle numbers n up to 4 have been achieved. On
the other hand, states of the form (1) can involve macro-
scopic numbers of particles, in combination with small
values of �. An important question is whether there is a
well-defined way to compare these two—very differ-
ent — cases. That is, can one give a meaningful answer
to the question whether, e.g., a state of the form (1) with
N � 106 particles, but � � 10�3 is more or less entangled
than an ideal GHZ state with n � 10?

A first simple way of assessing the ‘‘size’’ of states of
the form (1) is to look at the overlap between the two
terms. However, as pointed out above, this will be close to
zero in most interesting cases and thus does not lead to a
very sensitive criterion. A very intuitive way of compar-
ing (1) and (2) would be to assign to (1) an ‘‘effective
particle number’’ n, which could be interpreted as saying
that the state (1) is (in a certain well-defined sense)
equivalent to an ideal GHZ state of n qubits. This requires
well-defined and physically meaningful methods of de-
termining such an effective particle number. Here we will
propose two such methods and show that they lead to
essentially the same result, namely, that the effective n of
a state of the form (1) is of the order of N�2.

Our two methods are very different. The first one is
based on the rate of decoherence. An important potential
application of states of the form (1) is for the observation
of (or the search for) weak decoherence processes, ulti-
mately including unconventional ones as predicted by
spontaneous wave-function collapse models [11]. If the
state (1) is as sensitive to decoherence as an ideal n-qubit
GHZ state, it is natural to say that its effective size is n.

The second method of assigning an effective size to our
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how much ideal GHZ entanglement can be distilled from
the states (1) by local operations (acting separately on
each qubit) and classical communication.

It is remarkable that these two very different ap-
proaches lead to the same result. We believe that this
suggests that N�2 is indeed a good physical quantification
of the size of macroscopic superpositions of the present
type. We conclude by giving another simple argument in
favor of the proposed scaling of the effective size, based
on particle loss.

Let us now follow our first approach and study the
effect of local decoherence on the state (1). We will
consider the case where each of the particles undergoes
an independent decoherence process, i.e., each particle is
coupled to an independent bath. The effect of decoherence
is quantified as the rate of decay of the off-diagonal
elements in the natural basis. Note that we are interested
in properties of states and not of physical setups which
generate them. In this sense, although for different physi-
cal systems the decoherence process may be completely
different, we can study the behavior of the states describ-
ing those systems under a certain decoherence process in
order to compare the properties of these states.

We consider phase decoherence in the natural basis;
that is diagonal elements in the fj0i; j1ig basis remain
unchanged, while off-diagonal elements j0ih1j; j1ih0j de-
cay with a rate �. The decoherence process of an indi-
vidual system is described by jiihjj ! e��tjiihjj for i � j
and jjihjj ! jjihjj, which corresponds—in a quantum
information language —to a dephasing channel. The
action of this channel may be described by the com-
pletely positive map E defined through E	�
 � p0��
	1� p0
�z��z, where p0 � 	1� e��t
=2 and �z is a
Pauli matrix.

It is straightforward to establish the effect of this
decoherence process on an ideal n-particle GHZ state.
The density matrix for the state Eq. (2) is 1=2	j0ih0j�n �
j1ih1j�n � j0ih1j�n � j1ih0j�n
. Since E�n	��n
 �
�E	�
��n, one can study the decay of the off-diagonal
elements j0ih1j�n and j1ih0j�n by considering the action of
the decoherence channel E on the single-qubit operators
j0ih1j and j1ih0j. To be specific, we consider the trace
norm, kAk1 � tr

���������
AyA

p
, of at � E	a0
, where a0 � j0ih1j.

Note that kA�Nk1 � kAkN1 . Since at � e��ta0, we have
that ka�nt k1 � katkn1 � e��ntka0k1. The off-diagonal ele-
ment of the GHZ state decays with a rate �n.

We want to compare this to the decay rate of the off-
diagonal terms for the N-particle states j i of the form
(1). Without loss of generality we denote

j�1i � j0i; j�2i � cos	�
j0i � sin	�
j1i; (3)

and use the shorthand notation c� � cos	�
 and s� �
sin	�
. We have that K � 2	1� cN� 
 and for small �,
jh�1 j �2ij

2 � c2� � 1� �2. The density matrix for the
state Eq. (1) is 1=K	j�1ih�1j

�N � j�2ih�2j
�N � j�1i �

h�2j
�N � j�2ih�1j

�N
. We are interested in the decay rate
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of the off-diagonal elements. As before, the problem can
be reduced to studying single-qubit operators, namely,
b0 � j�1ih�2j � c�j0ih0j � s�j0ih1j. We have that b0
changes due to the above decoherence process to bt �
E	b0
 �

���
d

p
j0ih�tj with j�ti � 1=

���
d

p
	c�j0i � s�e��tj1i


and d � c2� � s2�e�2�t, such that j�ti is properly normal-
ized. It follows that kb�Nt k1 � dN=2. For �� 1; t� ��1,
N�2�t� 1, we have d � 1� 2�2�t and thus dN=2 �
e��N�

2t. This implies that the rate with which the coher-
ences of the state j i decay is given by �N�2. That is, the
decoherence rate of a state of the form Eq. (1) with
jh�1 j �2ij

2 � 1� �2 is the same as that of an ideal
n-party GHZ state with n � N�2 and thus one may
associate an effective particle number n � N�2 to the
state j i.

The observed decoherence rate is not restricted to this
specific decoherence model. Consider, for example, the
basis independent decoherence model of a partially
depolarizing channel. In this case, the individual deco-
herence process for each qubit is described by jiihjj !
�jiihjj � 	1��
�i;j

1
2 1 where � � e��t. Equivalently,

the completely positive map ~EE describing this process is
given by ~EE	�
 �

P
3
i�0 pi�i��i with p0 � 	3�� 1
=4

and p1 � p2 � p3 � 	1��
=4, where �0 � 1, and the
�i are Pauli matrices. We find that a0 [b0] changes due to
this decoherence process to at � ~EE	a0
 � �a0 [bt �
~EE	b0
� c�	1��
=2j0ih0j�	1��
=2j1ih1j�s��j0ih1j].
One obtains that katk1��� e��t and kbtk1����������������������
c2���2s2�

p
�

���
d

p
, which is exactly the same as in the

case of the dephasing channel. One thus recovers exactly
the same decoherence rates, �n and �N�2, respectively,
as in the case of the dephasing channel.

Let us now turn to our second approach, which is more
in the spirit of quantum information. We again consider
states j i of the form (1) with j�1;2i defined in Eq. (3).We
are interested in the distillation of ideal n-particle GHZ
states (2) from these states under the condition that only
local operations and classical communication are al-
lowed. The restriction to local operations is essential if
one wants to quantify the entanglement contained in a
given state because nonlocal operations could create addi-
tional entanglement. We are interested only in the number
of particles which form a GHZ state after the distillation
process, i.e., the effective size of the GHZ state, and not
which of the particles is entangled.

We show that the average number of the particles which
is in an ideal GHZ state after the distillation process
scales essentially as n � N�2. We (i) provide an explicit
protocol to produce —with unit probability—n-party
GHZ states from a single copy of j i, where the average
value of n is N�2=2 and (ii) show that even in the asymp-
totic limit, i.e., considering several identical copies of the
state j i, this average value is bounded from above by
n � N�2��log2	�
=2� [12].

Let us start with (i), a practical protocol which trans-
forms a single copy of j i deterministically into n-party
GHZ states by means of local filtering measurements.
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The protocol we propose is a generalization to multi-
partite systems of the distillation protocol of Ref. [13]
for the optimal distillation of tripartite GHZ states from a
single copy of an arbitrary pure state of three qubits.
Consider the local filtering measurement described by
the operator A � k	j0ih ~�1�1 j � j1ih ~�2�2 j
, where fj ~�1�1i;
j ~�2�2ig is the biorthonormal basis to fj�1i; j�2ig, i.e.,
h�j j ~�l�li � �jl. The constant k is chosen such that the
other operator �AA of the local, two-outcome generalized
measurement fA; �AAg, which fulfills AyA� �AAy �AA � 1, has
rank one. This implies that in case one obtains the out-
come corresponding to A, then A � 1�N�1j i �
k=

����
K

p
	j0ij�1i

�N�1 � j1ij�2i
�N�1
, while for the other

outcome �AA � 1�N�1j i / j�i � 	j�1i
�N�1 � j�2i

�N�1
,
i.e., the measured particle factors out. The distillation
protocol works as follows: Each of the parties performs
locally the two-outcome generalized measurement fA; �AAg
and all those n parties which obtained a positive outcome,
i.e., the outcome corresponding to A, finally share an
ideal n-party GHZ state of the form (2), while the remain-
ing parties are in a product state. We shall be interested in
the expectation value of n.

Using the notation of Eqs. (1) and (3), we find that

A �

��������������
1� c�

p

s�

�
s� �c�
0 1

�
: (4)

In the jth measurement, the probability to obtain the
outcome corresponding to A is given by p � 	1� c�
=
	1� cN�j�1

� 
 provided that none of the previous measure-
ments was successful. In case one of the previous mea-
surements was already successful, the probability to
obtain an outcome corresponding to A is given by ~pp �
	1� c�
 for the remaining parties. This different behavior
after the first successful measurement can be easily
understood by noting that once one of the measurements
was successful, then the (normalized) state after the
measurement is given by 1=

���
2

p
	j0ij�1i

�N0
� j1ij�2i

�N0

,

while otherwise the normalization constant is K � 2	1�
cN�j�1
� 
. One finds that the probability qn to obtain n

(where n � 1) successful measurements—and thus
n-party GHZ states—is given by

qn � 	1� c�
ncN�n�

�
N
n

�
1

1� cN�
; (5)

while q0 � 2cN� =	1� cN� 
. Note that this probability dis-
tribution is, up to the factor 1=	1� cN� 
 and correspond-
ingly the value of q0, very similar to a binomial
distribution. The expectation value hni �

PN
j�0 qjj is

given by hni � 	1� c�
N=	1� cN� 
 which simplifies for
�� 1 and N�2 � 1 to

hni � N�2=2: (6)

This provides the desired lower bound for the distillation
rates of n-party GHZ states.

Regarding (ii), the announced upper bound for the
distillation rate, we use the fact that the von Neumann
entropy of the reduced density operator with respect to
210402-3
system 1 �1 [14], S1	�1
 � �tr	�1log2�1
, is an entangle-
ment monotone, i.e., not increasing under local operations
and classical communication [15–17].

We consider the distillation process in the asymptotic
limit, i.e., the transformation of M ! 1 identical copies
of the state j i to n-particle GHZ states [16]. Such a
distillation protocol consists of an arbitrary sequence of
local operations (including measurements), possibly as-
sisted by classical communication, mathematically de-
scribed by a multilocal superoperator [16]. The protocol
produces a certain number, say Mn copies, of n-party
GHZ states, which can, as we are interested only in the
number of parties which constitute a GHZ state, without
loss of generality be considered to be symmetrically
distributed among the N parties [18]. Such a symmetric
configuration is denoted by jGHZni

�Mn [19]. The distil-
lation protocol is described by the following transforma-
tion:

j i�M !
ON
n�2

jGHZni
�pnM; (7)

where pn � 0 denotes the average number of n-party GHZ
states which are produced per copy from j i.

Given the monotonicity of the entropy under local
operations, we obtain

MS1	j i
 �
XN
n�2

S1	jGHZni�pnM
; (8)

where S1	jGHZni�pnM
 denotes the entropy of the reduced
density operator with respect to system 1 of pnM copies
of (symmetrically distributed) n-particle GHZ states [19].
Since the probability that the first particle belongs to the
n entangled particles is given by p � 	N�1

n�1
=	
N
n
 � n=N,

we have that S1	jGHZni
�pnM
 � pnMn=N and thusP

N
n�2 pnn � NS1	j i
. It is straightforward to calculate

S1	j i
 using that for j i (1), the reduced density operator
with respect to system 1 is given by �1 � �	1� c2��
2cN� 
j0ih0j � s�c�	1� cN�2

� 
	j0ih1j � j1ih0j
� s2�j1ih1j�1=
	2� 2cN� 
. For �� 1 and N�2 � 1, one obtains that
S1	j i
 ���2log2	�
=2 which implies

XN
n�2

pnn��N�2
1

2
log2	�
 (9)

as announced [20].
We would finally like to mention another simple argu-

ment that suggests the same scaling for the effective size
of the states Eq. (1). Let us compare the effects of particle
loss on the state (1) and on an ideal GHZ state. Suppose
that every qubit is lost with a probability !. Consider an
n-qubit GHZ state. As soon as a single qubit is lost, the
state becomes completely diagonal. There is only an off-
diagonal element in the case of no losses, which has a
probability of 	1� !
n. The expectation value of the
off-diagonal element in the case of losses is therefore
1
2 	1� !
n, equal to 1

2 e
�!n for small !.
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On the other hand, for the state (1), tracing out particles
reduces the size of the off-diagonal terms but does not
completely remove them. Tracing out k particles multi-
plies the off-diagonal terms by a factor of h�1j�2i

k �
	1� �2=2
k, equal to e�k�

2=2 for small �. The typical
number of particles lost will be N!, therefore the typical
off-diagonal term will go like e�!N�

2=2. For large N! the
probability distribution will be strongly peaked around
the typical value. Therefore the expectation value of the
off-diagonal term will be of order e�!N�

2=2. One sees that
if the ideal GHZ state has n � N�2=2, then the expecta-
tion values of the off-diagonal terms will have the same
size for the two states. This is one more confirmation for
our proposal that the ‘‘effective size’’ of the state (1)
scales like N�2. Note that there are several other argu-
ments which confirm this effective size n � N�2, e.g., an
argument related to the statistical distinguishability of
states j�1;2i as pointed out in Ref. [21].

To summarize, we provided two different methods to
assign an effective particle number to GHZ-like states
of the form j i / j�1i

�N � j�2i
�N with jh�1j�2ij

2 �
1� �2. The first method is based on the rate of decoher-
ence, and we found that j i behaves as an ideal n-party
GHZ state with n � N�2. In the second method, which is
more in the spirit of quantum information, we provided
lower and upper bounds for the distillation rates pn of
ideal n-party GHZ states using only local operations and
classical communication. Again, we found that

P
pnn �

N�2, i.e., the average number of particles which form an
ideal n-party GHZ state, essentially scales as n � N�2.
This illustrates that not only the number of particles but
also the properties of the states appearing in the micro-
scopic description of the system determine the effective
size of the corresponding GHZ-like state.

Some open questions remain. On the one hand, we have
considered a particular class of GHZ-like states (1). One
can have physical systems where the macroscopic super-
position cannot be described by states of this form. In
particular, the states appearing in the superposition may
not be a tensor product of identical microscopic states,
j�1;2i

�N , either because they are entangled themselves,
e.g., the position states of the atoms in an oscillating
micromechanical cantilever or mirror, or the correspond-
ing system cannot be decomposed in a natural way into
subsystems, e.g., a superposition of two coherent states,
j"i � j � "i. It would be interesting to study by similar
means the effective size of those superpositions and
maybe compare them with the ones treated here.

On the other hand, there are experiments where macro-
scopic superpositions have been created but there is no
microscopic description of the states produced [7]. It
would be interesting to find such a microscopic descrip-
tion and—in case the states can be written as (1) (which
would be natural) —to assess an effective size of the
states for these experiments.
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