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Assortative Mixing in Networks
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A network is said to show assortative mixing if the nodes in the network that have many connections
tend to be connected to other nodes with many connections. Here we measure mixing patterns in a
variety of networks and find that social networks are mostly assortatively mixed, but that technological
and biological networks tend to be disassortative. We propose a model of an assortatively mixed
network, which we study both analytically and numerically. Within this model we find that networks
percolate more easily if they are assortative and that they are also more robust to vertex removal.

DOI: 10.1103/PhysRevLett.89.208701 PACS numbers: 89.75.Hc, 64.60.Ak, 87.23.Ge, 89.20.Hh
is one less than the total degree and hence is distributed in
proportion to �k� 1�pk�1. The correctly normalized dis-
tribution qk of the remaining degree is then

i 2 i i i 2

where ji; ki are the degrees of the vertices at the ends of
the ith edge, with i � 1; . . . ;M.
Many systems take the form of networks—sets of
vertices joined together by edges—including social
networks, computer networks, and biological networks
[1,2]. Avariety of models of networks have been proposed
and studied in the physics literature, many of which have
been successful at reproducing features of networks in the
real world [3–5]. However, there is an important element
missing from these models: many networks show ‘‘assor-
tative mixing’’ on their degrees, i.e., a preference for high-
degree vertices to attach to other high-degree vertices,
while others show disassortative mixing—high-degree
vertices attach to low-degree ones. (The degree of a
vertex is the number of other vertices to which it is
attached.) In this paper we first demonstrate the presence
of assortative mixing in a wide variety of networks by
direct measurement, and then argue, using exactly solv-
able models and numerical simulations, that assortative
mixing can have a substantial effect on the behavior of
networked systems. Models that do not take it into ac-
count will necessarily fail to reproduce correctly many of
the behaviors of real-world networked systems.

Consider then a network, represented in the simplest
case by an undirected graph of N vertices and M edges,
with degree distribution pk. That is, pk is the probability
that a randomly chosen vertex on the graph will have
degree k. Now consider a vertex reached by following a
randomly chosen edge on the graph. The degree of this
vertex is not distributed according to pk. Instead, it is
biased in favor of vertices of high degree, since more
edges end at a high-degree vertex than at a low-degree
one. This means that the degree distribution for the vertex
at the end of a randomly chosen edge is proportional kpk,
rather than just pk. In this paper, we will usually be
interested not in the total degree of such a vertex, but in
the remaining degree —the number of edges leaving the
vertex other than the one we arrived along. This number
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qk �
�k� 1�pk�1P

j jpj
: (1)

Following Callaway et al. [6], we now define the quan-
tity ejk to be the joint probability distribution of the
remaining degrees of the two vertices at either end of a
randomly chosen edge. This quantity is symmetric in its
indices on an undirected graph ejk � ekj, and obeys the
sum rules X

jk

ejk � 1;
X
j

ejk � qk: (2)

In a network with no assortative (or disassortative)
mixing ejk takes the value qjqk. If there is assortative
mixing, ejk will differ from this value and the amount
of assortative mixing can be quantified by the connected
degree-degree correlation function hjki � hjihki �P

jk jk�ejk � qjqk�, where h� � �i indicates an average
over edges [6]. This correlation function is zero for no
assortative mixing and positive or negative for assortative
or disassortative mixing, respectively. For the purposes of
comparing different networks, it is convenient to normal-
ize it by dividing by its maximal value, which it achieves
on a perfectly assortative network, i.e., one with ejk �
qk
jk. This value is equal to the variance �2

q �P
k k

2qk � 	
P

k kqk

2 of the distribution qk, and hence

the normalized correlation function is

r �
1

�2
q

X
jk

jk�ejk � qjqk�; (3)

which is simply the Pearson correlation coefficient of the
degrees at either ends of an edge and lies in the range
�1 � r � 1. For the practical purpose of evaluating r on
an observed network, we can rewrite (3) as

r �
M�1

P
i jiki � 	M�1

P
i
1
2 �ji � ki�
2

M�1
P

1 �j2 � k2� � 	M�1
P

1 �ji � ki�
2
; (4)
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In Table I we show values of r for a variety of real-
world networks. As the table shows, of the social net-
works studied (the top five entries in the table) all have
significant assortative mixing. By contrast, the techno-
logical and biological networks (the middle six entries in
Table I) are all disassortative.

We have also calculated r analytically for three models
of networks: (1) the random graph of Erdős and Rényi
[14], in which edges are placed at random between a fixed
set of vertices; (2) the grown graph model of Callaway
et al. [6], in which both edges and vertices are added at
random at constant but possibly different rates, the ratio
of the rates being denoted 
; (3) the grown graph model of
Barabási and Albert [4], in which both edges and vertices
are added, and one end of each edge is added with linear
preferential attachment, meaning that the probability of
its attaching to a vertex is proportional to the current
degree of that vertex.

For the random graph, since edges are placed at random
without regard to vertex degree it follows trivially that
r � 0 in the limit of large graph size. The model of
Callaway et al., however, although apparently similar in
construction, shows markedly different behavior: using
TABLE I. Size n and assortativity coefficient r for various
networks: collaboration networks of (a) scientists in physics and
biology [7], (b) mathematicians [8], (c) film actors [3], and
(d) businesspeople [9]; (e) connections between autonomous
systems on the Internet [10]; (f) undirected hyperlinks between
Web pages in a single domain [4]; (g) protein-protein inter-
action network in yeast [11]; (h) undirected (and unweighted)
synaptic connections in the neural network of the nematode C.
Elegans [3]; undirected trophic relations in the food webs of
(i) Ythan Estuary, Scotland [12], and (j) Little Rock Lake,
Wisconsin [13]. The last three lines give analytic results for
model networks in the limit of large network size: (u) the
random graph of Erdős and Rényi [14]; (v) the grown graph
model of Callaway et al. [6]; (w) the model of Barabási and
Albert [4].

Network n r

Physics coauthorship (a) 52 909 0:363
Biology coauthorship (a) 1 520 251 0:127
Mathematics coauthorship (b) 253 339 0:120
Film actor collaborations (c) 449 913 0:208
Company directors (d) 7 673 0:276

Internet (e) 10 697 �0:189
World-Wide Web (f) 269 504 �0:065
Protein interactions (g) 2 115 �0:156
Neural network (h) 307 �0:163
Marine food web (i) 134 �0:247
Freshwater food web (j) 92 �0:276

Random graph (u) 0
Callaway et al. (v) 
=�1� 2
�
Barabási and Albert (w) 0
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results from Ref. [6], we find that r � 
=�1� 2
� for this
model. Thus the model shows significant assortative mix-
ing, with a maximum value of r � 1

2 in the limit of large

. This agrees with intuition: in the grown graph the older
vertices have higher degree and also tend to have higher
probability of being connected to one another, simply by
virtue of being around longer. Thus one would expect
positive assortative mixing.

The model of Barabási and Albert [4] provides an
interesting counterexample to this intuition. Although
this is a grown graph model, in which again older vertices
have higher degree [15], it shows no assortative mixing at
all: making use of results due to Krapivsky and Redner
we can show that r ! 0 as �log2N�=N as N becomes large.
The model of Barabási and Albert has been used as a
model of the structure of the Internet and the World-Wide
Web. Since these networks show significant disassortative
mixing, however (Table I), it is clear that the model is
incomplete. It is an open question what type of network
evolution processes could explain the values of r observed
in the real-world networks.

Turning now to theoretical developments, we propose a
simple model of an assortatively mixed network, which is
exactly solvable for many of its properties in the limit of
large graph size. Consider the ensemble of graphs in
which the distribution ejk takes a specified value. This
defines a random graph model similar in concept to the
random graphs with specified degree sequence [5,16],
except for the added element of assortative mixing.

Consider a typical member of this ensemble in the limit
of large graph size, and consider a randomly chosen edge
in that graph, one end of which is attached to a vertex of
degree j.We ask what the probability distribution is of the
number of other vertices reachable by following that edge.
Let this probability distribution be generated by a gen-
erating function Gj�x�, which depends in general on the
degree j of the starting vertex. By arguments similar to
those of Ref. [5], we can show that Gj�x� must satisfy a
self-consistency condition of the form

Gj�x� � x

P
k ejk	Gk�x�
kP

k ejk
; (5)

while the number of vertices reachable from a randomly
chosen vertex is generated by

H�x� � xp0 � x
X1
k�1

pk	Gk�1�x�

k: (6)

The average size of the component to which such a vertex
belongs is given by the derivative of H: hsi � H0�1� �
1�

P
k kpkG0

k�1�1�. Differentiating Eq. (5) we then get

hsi � 1� zq �A�1 � q; (7)

where z is the mean degree, q is the vector whose ele-
ments are the qk, and A is the asymmetric matrix with
elements Ajk � kejk � qk
jk.
208701-2



1 10 100

exponential parameter  κ

0.0

0.2

0.4

0.6

0.8

1.0

gi
an

t c
om

po
ne

nt
  S

assortative
neutral
disassortative

FIG. 1. Size of the giant component as a fraction of graph
size for graphs with the edge distribution given in Eq. (9). The
points are simulation results for graphs of N � 100 000 verti-
ces, while the solid lines are the numerical solution of Eq. (8).
Each point is an average over ten graphs; the resulting statis-
tical errors are smaller than the symbols. The values of p are
0.5 (circles), p0 � 0:146 . . . (squares), and 0:05 (triangles).

VOLUME 89, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 11 NOVEMBER 2002
Equation (7) diverges at the point at which the deter-
minant of A is zero. This point marks the phase transition
at which a giant component forms in our graph. By
considering the behavior of Eq. (7) close to the transition,
where hsi must be large and positive in the absence of a
giant component, we deduce that a giant component ex-
ists in the network when detA > 0. This is the appropriate
generalization for a network with assortative mixing of
the criterion of Molloy and Reed [16] for the existence of
a giant component.

To calculate the size S of the giant component, we
define uk to be the probability that an edge connected to
a vertex of remaining degree k leads to another vertex that
does not belong to the giant component. Then

S � 1� p0 �
X1
k�1

pku
k
k�1; uj �

P
k ejku

k
kP

k ejk
: (8)

To test these results and to help form a more complete
picture of the properties of assortatively mixed networks,
we have also performed computer simulations, generating
networks with given values of ejk and measuring their
properties directly. Generating such networks is not en-
tirely trivial. One cannot simply draw a set of degree pairs
�ji; ki� for edges i from the distribution ejk, since such a
set would almost certainly fail to satisfy the basic topo-
logical requirement that the number of edges ending at
vertices of degree k must be a multiple of k. Instead,
therefore we propose the following Monte Carlo algo-
rithm for generating graphs.

First, we generate a random graph with the desired
degree distribution according to the prescription given
in Ref. [16]. Then we apply a Metropolis dynamics to
the graph in which on each step we choose at random two
edges, denoted by the vertex pairs, �v1; w1� and �v2; w2�,
that they connect. We measure the remaining degrees
�j1; k1� and �j2; k2� for these vertex pairs, and then replace
the edges with two new ones �v1; v2� and �w1; w2� with
probability min	1; �ej1j2ek1k2�=�ej1k1ej2k2�
. This dynamics
conserves the degree sequence, is ergodic on the set of
graphs having that degree sequence, and, with the choice
of acceptance probability above, satisfies detailed balance
for state probabilities

Q
i ejiki , and hence has the required

edge distribution ejk as its fixed point.
As an example, consider the symmetric binomial form

ejk � N e��j�k�=�

��
j� k
j

�
pjqk �

�
j� k
k

�
pkqj

�
; (9)

where p� q � 1, � > 0, and N � 1
2 �1� e�1=�� is a

normalizing constant. (The binomial probabilities p and
q should not be confused with the quantities pk and qk
introduced earlier.) This distribution is chosen for ana-
lytic tractability, although its behavior is also quite natu-
ral: the distribution of the sum j� k of the degrees at the
ends of an edge falls off as a simple exponential, while
that sum is distributed between the two ends binomially,
208701-3
the parameter p controlling the assortative mixing. From
Eq. (3), the value of r is

r �
8pq� 1

2e1=� � 1� 2�p� q�2
; (10)

which can take both positive and negative values, passing
through zero when p � p0 �

1
2 �

1
4

���
2

p
� 0:1464 . . . .

In Fig. 1 we show the size of the giant component for
graphs of this type as a function of the degree scale
parameter �, from both our numerical simulations and
the exact solution above. As the figure shows, the two are
in good agreement. The three curves in the figure are for
p � 0:05, where the graph is disassortative, p � p0,
where it is neutral (neither assortative nor disassortative),
and p � 0:5, where it is assortative.

As � becomes large we see the expected phase tran-
sition at which a giant component forms. There are two
important points to notice about the figure. First, the
position of the phase transition moves lower as the graph
becomes more assortative. That is, the graph percolates
more easily, creating a giant component, if the high-
degree vertices preferentially associate with other high-
degree ones. Second, notice that, by contrast, the size of
the giant component for large � is smaller in the assorta-
tively mixed network.

These findings are intuitively reasonable. If the net-
work mixes assortatively, then the high-degree vertices
will tend to stick together in a subnetwork or core group
of higher mean degree than the network as a whole. It is
reasonable to suppose that percolation would occur earlier
within such a subnetwork. Conversely, since percolation
will be restricted to this subnetwork, it is not surprising
208701-3
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that the giant component has a smaller size in this case
than when the network is disassortative. These results
could have implications, for example, for the spread of
disease on social networks [17]—social networks being
assortatively mixed in most cases, as Table I shows. The
core group of an assortatively mixed network could form
a ‘‘reservoir’’ for disease, sustaining an epidemic even in
cases in which the network is not sufficiently dense on
average for the disease to persist. On the other hand, one
would expect the disease to be restricted to a smaller
segment of the population in such cases than for diseases
spreading on neutral or disassortative networks.

Assortative mixing also has implications for questions
of network resilience, the subject of much discussion in
the recent literature [18–20]. It has been found that the
connectivity of many networks (i.e., the existence of
paths between pairs of vertices) can often be destroyed
by the removal of just a few of the highest degree vertices,
a result that may have applications in, for example, vac-
cination strategies [21]. In assortatively mixed networks,
however, we find numerically that removing high-degree
vertices is a relatively inefficient strategy for destroying
network connectivity, presumably because these vertices
tend to be clustered together in the core group, so that
removing them is somewhat redundant. In a disassortative
network with a similarly sized giant component attacks
on the highest degree vertices are much more effective,
these vertices being broadly distributed over the network
and presumably therefore forming links on many paths
between other vertices. For networks of the type de-
scribed by Eq. (9) we find that the number of high-degree
vertices that need to be removed to destroy similarly
sized giant components is greater by a factor of about 5
to 10 in an assortative network (p � 0:5) than in a dis-
assortative one (p � 0:05) for the typical parameter val-
ues studied here.

These considerations paint rather a grim picture: the
networks that we might want to break up, such as the
social networks that spread disease, appear to be assorta-
tive, and therefore are resilient, at least against simple
targeted attacks such as attacks on the highest degree
vertices. And yet at the same time the networks that we
would wish to protect, including technological networks
such as the Internet, appear to be disassortative, and are
hence particularly vulnerable.

To conclude, in this paper we have studied assortative
mixing by degree in networks— the tendency for high-
degree vertices to associate preferentially with other
high-degree vertices. We have defined a scalar measure
of assortative mixing and used it to show that many social
networks have significant assortative mixing, while tech-
nological and biological networks seem to be disassorta-
tive. We have also proposed a model of an assortatively
mixed network, which we have solved exactly using gen-
erating function techniques, and also simulated using a
Monte Carlo graph sampling method. Within this model
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we find that assortative networks percolate more easily
and that they are also more robust to removal of their
highest degree vertices, while disassortative networks
percolate less easily and are more vulnerable. This sug-
gests that social networks may be robust to intervention
and attack while technological networks are not.
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