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Nontrivial steady flows have recently been found that capture the main structures of the turbulent
buffer layer. We study the effects of polymer addition on these ‘‘exact coherent states’’ (ECS) in plane
Couette flow. Despite the simplicity of the ECS flows, these effects closely mirror those observed
experimentally: Structures shift to larger length scales, wall-normal fluctuations are suppressed while
streamwise ones are enhanced, and drag is reduced. The mechanism underlying these effects is
elucidated. These results suggest that the ECS are closely related to buffer layer turbulence.
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value seen in experiments [19,20]. The structure of the
ECS captures the counterrotating staggered streamwise

infinitesimal material line satisfies the same expression
but with ��1 and � set to zero, it is straightforward to
Rheological drag reduction, the suppression by addi-
tives of skin friction in turbulent flow, has received much
attention since its discovery in 1947 [1–3]. For many
polymer-solvent systems, the pressure drop measured in
the pipe flow of the solution can be 30%–50% less than for
the solvent alone. The central rheological feature of drag-
reducing additives is their extensional behavior in solu-
tion: For dilute polymer solutions, in particular, the
stresses arising in extensional flow can be orders of mag-
nitude larger than those developed in a shear flow. This
fact is well recognized; nevertheless the mechanism of
interaction between polymer stretching and turbulent
structure is not well understood, and the goal of the
present work is to attempt to shed light on this interaction.

A key structural observation from experiments and
direct numerical simulations (DNS) of drag-reducing
solutions is the modification of the buffer region near
the wall [4–10]. It has long been known that the flow in
this region is very structured, containing streamwise
vortices that lead to streaks in the streamwise velocity
[11]; these structures are thickened in both the wall-
normal and spanwise directions during flow of drag-
reducing solutions [4,5]. Because of its importance in
the production and dissipation of turbulent energy [11],
any effort to mechanistically understand rheological drag
reduction should address this region.

To better understand the effect of the polymer on the
buffer layer, we wish to study a model flow that has
structures similar to those seen in this region but without
the full complexities of time-dependent turbulent flows.
Fortunately, a family of such flows exists, in the recently
discovered exact coherent states (ECS) found by compu-
tational bifurcation analysis in plane Couette and plane
Poiseuille flows [12–16]. These are three-dimensional,
traveling wave flows (hence, steady in a traveling refer-
ence frame) that appear via saddle-node bifurcations [17]
at a Reynolds number somewhat below the transition
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vortices that dominate the structure in the buffer region.
From the dynamical point of view, there is evidence that
these states form a part of the dynamical skeleton of the
turbulent flow: That is, they are saddle points that under-
lie the strange attractor of turbulence [21,22]. Finally, the
nonlinear self-sustaining mechanism underlying these
states has been elucidated [23]. A perturbation of the
base flow in the form of streamwise vortices redistributes
the streamwise momentum of the flow. This redistribution
creates spanwise fluctuations in the streamwise velocity,
the ‘‘streaks.’’ The spanwise inflections in the streamwise
velocity profile lead to a three-dimensional instability
that develops into staggered nearly streamwise vortices
that regenerate the streaks. Because the ECS capture the
structures of the buffer region and are mechanistically
well understood, we believe that they provide an excellent
simplified, yet still exact, model flow for studying
polymer drag reduction. The leading order effect of vis-
coelasticity on the ECS is therefore the focus of the
present study.

To begin, we briefly describe a general result relating
polymer stretch to flow kinematics. For a trajectory in a
flow field, the Liapunov exponents give the Lagrangian
time-averaged rate of stretch of material lines. If the
largest Liapunov exponent, �max, is positive, the flow is
extensional on average. In particular, for homogeneous
turbulence, the expected value of�max is positive [24] and
we show below that this is also the case for the ECS. Now
consider the dynamics of a Hookean dumbbell model of a
polymer in a flow field. The end-to-end vector q of the
dumbbell evolves in the flow field, v, as

Dq
Dt

� q � rv�
1

2�
q� ��t�; (1)

where D=Dt is the time derivative evaluated on a fluid
element, � is the stress relaxation time for the dumbbell,
and ��t� is the random Brownian force. Noting that an
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FIG. 1. Newtonian and viscoelastic (El � 0:20, � � 0:97)
bifurcation diagrams. Each curve represents a locus of steady
state ECS flows; the leftmost point on each curve is the position
of the saddle-node bifurcation.
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show that Hookean dumbbells will stretch indefinitely in
a flow if and only if ��max � We� >

1
2 , where We� is a

Weissenberg number based on �max. This result is a
specific statement of an idea that originated with
Lumley [25] (see also [26–29]). The computations below
show the importance of We� in determining the effect of
polymers on coherent structures.

We study here the effect of polymer on the exact
coherent states that arise in a variant of plane Couette
flow [14]. Denoting the streamwise direction as x, the
wall-normal direction as y, and the spanwise, or vorticity,
direction as z, we consider a flow with boundary condi-
tions @vx@y � 1, vy �

@vz
@y � 0 at y � �1. The characteristic

velocity, U, and the half-height of the channel, l, have
been used to scale the velocity and positions, respectively.
These ‘‘constant vorticity’’ boundary conditions provide
an advantage over no-slip conditions in that they allow us
to model only the buffer region in our domain by elimi-
nating the viscous sublayer. (Exact coherent states found
using no-slip boundary conditions [16] show a qualita-
tively identical vortical structure, only offset from the
wall by a small region comprising the viscous sublayer.)
Periodic boundary conditions are applied in the stream-
wise and spanwise directions. For this study, the wave-
length of the structures in the streamwise and spanwise
directions is fixed at ‘x � 2�=0:40 and ‘z � 2�=1:0,
respectively (or 165 and 66, if expressed in wall units at
a Reynolds number of 110). For this flow, a trivial
(Couette) base state exists, vx�y� � y; the maximum
mean velocity for the ECS is significantly reduced com-
pared to the base state velocity due to the enhanced
transport of momentum [14].

In our formulation, time, t, is scaled with l=U, and
pressure, p, with �U2, where � is the fluid density. The
stress due to the polymer, �p, is nondimensionalized with
the polymer elastic modulus, G � �p=�, where �p is the
polymer contribution to the zero-shear viscosity and � is
the relaxation time for the polymer. The momentum and
mass balances are

Dv
Dt

� �rp� �
1

Re
r2v� �1� ��

1

Re2
1

El
�r � �p�; (2)

r � v � 0; (3)

where �s is the solvent viscosity, El � ���s � �p�=�l2,
and � � �s=��s � �p�. The Reynolds number, Re, is
based on the total viscosity, Re � �Ul=��s � �p�.

We calculate the polymer stress with the commonly
used FENE-P model [30], which idealizes the polymer
molecules as bead-spring dumbbells with finitely exten-
sible springs. With this model, the nondimensional struc-
ture tensor � ( � hqqi, where h i denotes ensemble
average) evolves according to

�
1� tr�

b

�We

�
D�
Dt

� � � rv�rvT � �
�
�

b�
b� 2

; (4)
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�
�

1� tr�
b

�

�
1�

2

b� 2

�
�
�
; (5)

where We � �U
l is the Weissenberg number based on the

wall shear rate and b is proportional to the maximum
extension of the dumbbell: tr� cannot exceed b. A simple
measure of the importance of extensional polymer stress
is the magnitude of the parameter Ex � 2

3 ��b�p�=�s. In
uniaxial extension with extension rate _"", Ex � 1 implies
that �p � �v as _"" ! 1, where �v is the solvent contribu-
tion to the stress. The polymer can significantly affect the
flow only when Ex * 1. In the present flow, this parame-
ter also represents the maximum ratio of polymer stress to
Reynolds shear stress (the flux of x momentum due to
fluctuations in y velocity); the scaling theory of Tabor and
de Gennes [31–33] treats the regime Ex � 1.

The governing equations are solved through a Picard
iteration. A given velocity field is first used to calculate
the polymer stress tensor, �p, by time integrating Eq. (4)
until a steady state is attained. For the new �p, a steady
state of the momentum and continuity equations is found
by Newton iteration. The resulting velocity field is used to
compute the new �p, and the process is repeated until the
velocity field converges. Equations (2) and (3) are discre-
tized as in [14], using a Fourier-Galerkin formulation
with typically a 7� 19� 7 grid. Equation (4) is discre-
tized with a Fourier-pseudospectral method, typically
with a 32� 32� 32 grid, and time integration performed
with an Adams-Bashforth method. To achieve numerical
stability, a small diffusive term is added to Eq. (4) (cf. [9])
and integrated with a Crank-Nicholson scheme.

Before presenting the effects of the polymer on the
ECS, we recall the result that We� > 1=2 implies large
stretch of polymer chains. For the Newtonian ECS at
Re � 110 on the lower branch of the bifurcation diagram
(see Fig. 1), the velocity field is very nearly ergodic,
with �max � 0:030. The condition We� > 1=2 thus trans-
lates into We * 17 for large polymer stretch and, for
208301-2
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Ex � O�1�, will define the onset condition for the poly-
mer to begin to strongly affect the flow field. In DNS of a
FENE-P fluid in plane channel flow, Sureshkumar
et al. [9] found no drag reduction at We � 12:5 and
significant drag reduction at We � 25; another recent
DNS study [34] places the onset value at We � 20. This
close correspondence between the onset condition pre-
dicted from the ECS kinematics and that found by DNS
strongly suggests that the ECS model captures the essen-
tial structure of the buffer layer.

Figure 1 shows how the addition of polymer stress
affects the bifurcation diagram (i.e., the locus of steady
state flows) for El � 0:20 (We� � 2=3) and Ex � 1 to 3.
On the y axis of the diagram is the maximum value of the
streamwise- and spanwise-averaged streamwise velocity
hhvxii. (The trivial Couette solution is at maxhhvxii � 1.)
When Re attains a certain value that we denote Resn, two
new steady solutions appear in a saddle-node bifurcation.
For small values of Ex, Resn decreases compared to the
Newtonian value but, once the polymer stress begins to
exceed the viscous (Ex � 1:5), Resn increases above the
Newtonian value —the presence of the polymer is sup-
pressing the ECS. Qualitatively identical behavior is ob-
served experimentally in the onset Reynolds number for
turbulent pipe flow [7]. Note that, for a given velocity U
and total viscosity �, the increase in critical Reynolds
number corresponds to an increase in the characteristic
length scale of the coherent structure, again consistent
with experimental observations [4,5,9]. Finally, we see
that hhvxii becomes larger for the viscoelastic flows than
for the Newtonian—drag reduction occurs.

To examine more closely the effect of the polymer
stress on the velocity fields, Fig. 2 shows results at con-
stant Re while varying El, or, equivalently, We� (based
on �max � 0:030). Here we plot maxhhv02y ii, where the
prime denotes the fluctuating part of a quantity, here
wall-normal velocity. At Ex � 1, after an initial increase,
maxhhv02y ii decreases below the Newtonian value and
FIG. 2. Wall normal velocity and maximum polymer stretch
vs El and We�, lower branch solutions, Re � 110, � � 0:97.
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eventually saturates, as the polymer stress asymptotes at
high We� to a fixed value relative to the viscous stress. In
this case, the polymer stretch becomes nearly uniformly
large throughout the domain. The decrease in wall-
normal velocity with We� is even more drastic as the
extensibility parameter Ex increases. Similar trends are
seen in the streamwise enstrophy and Reynolds shear
stress. Since Ex is related to the extensional viscosity of
the viscoelastic solution, these results show the impor-
tance of extensional stresses in affecting the ECS. The
spatial maximum of tr�, which is proportional to the
square of the polymer extension, is also presented in
Fig. 2. Finally, note that the majority of both the polymer
stretch and the change in wall-normal velocity occurs in
the range 0:1<We� < 1:0. In contrast to the decreases in
wall-normal fluctuations, streamwise enstrophy, and
Reynolds shear stress for We� * 0:1, the streamwise
fluctuations hhv02x ii are found to increase. All of these
trends are observed in DNS and experiments [1,3,9].

Turning now to how, and why, the flow structure is
changed by the polymer dynamics, Figs. 3(a) and 3(b)
show (a) the streamwise velocity vx at y � 0:875 (where
the maximum in the polymer stress occurs) for the
Newtonian lower branch solution at Re � 110 and (b)
the difference vx;VE � vx;N between the viscoelastic (VE)
and Newtonian (N) solutions. Here we see the ‘‘streak’’
(white ribbon) and—by adding the pattern of Fig. 3(b) to
that of 3(a)—that this streak is ‘‘straightened out’’ by the
viscoelasticity. Figure 3(c) shows a contour plot of fx,
the x component of the force f exerted by the polymer on
the fluid, [f � �1� ��Re�2El�1r � �p], at y � 0:875.
This force is significantly negative and corresponds spa-
tially to the region where fluid elements are leaving the
streak to move into the vorticity-dominated regions. The
y and z components of the force have also been examined;
they are smaller than the x component but are clearly seen
to work directly against the vortex motions: For example,
where vy is highly positive in an upwelling, fy is highly
negative. This behavior is also seen in the buffer layer
structures in the DNS study of a drag-reducing polymer
solution by de Angelis et al. [35]. The origin for this
structure of the polymer force field becomes apparent
on examination of polymer stresses along fluid trajecto-
ries: Polymer molecules stretch in (or moving into) the
streak regions, remaining highly stretched until they
begin to leave the streak. As molecules move from the
streak into and around the vortices, they relax. The spatial
gradients in stress accompanying this relaxation work
against the vortices,‘‘unwinding’’ them. This vortex sup-
pression leads to collapse of the self-sustained process—
or more precisely to a shift of the process to larger
scales—and thus to drag reduction.

In summary, we list several points of agreement
between our results and observations from DNS and
experiments in fully turbulent flow, namely: (1) the
ECS bear a strong similarity to the structures observed
or educed from structural studies of the buffer layer and
208301-3
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FIG. 3. Streamwise velocity for the Newtonian (N) and vis-
coelastic (VE) solutions and polymer force at y � 0:875. Lower
branch solutions at Re � 110 and for the viscoelastic solution
El � 0:15, Ex � 3, and � � 0:97. (a) vx;N [range: 0.0 (black)–
0.889 (white)]. (b) vx;VE � vx;N [range: �0:0395 (black)–
0.0395 (white)]. (c) fx [range: �0:00413 (black)–0.00413
(white)]. By symmetry, identical behavior with opposite signed
velocity is occurring at y � �0:875.
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apparently underlie its dynamics; (2) for O�1� values of
Ex, the onset Weissenberg number for drag reduction
predicted from the ECS kinematics agrees closely with
DNS results; (3) the effects of viscoelasticity on the
Couette flow ECS are very similar to those observed in
the buffer layer: (i) wall-normal velocity fluctuations are
suppressed and streamwise ones enhanced, (ii) Reynolds
shear stress decreases, (iii) streamwise vorticity de-
creases, (iv) the velocity fluctuations and polymer force
are anticorrelated, and (v) drag is reduced. Finally, at
fixed U and �, the upward shift in the onset Reynolds
number corresponds to an increase in length scale for the
structures, again consistent with experiments. These suc-
cesses show that studying the ECS holds promise for
capturing the essential physics of drag reduction.
Indirectly, they also validate the view that the ECS
underlie Newtonian turbulence, because the effects of
polymers on the ECS so closely mirror their effects on
full turbulence.
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