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Almost Every Pure State of Three Qubits Is Completely Determined
by Its Two-Particle Reduced Density Matrices
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In a system of n quantum particles, we define a measure of the degree of irreducible n-way
correlation, by which we mean the correlation that cannot be accounted for by looking at the states
of n� 1 particles. In the case of almost all pure states of three qubits, we show that there is no such
correlation: almost every pure state of three qubits is completely determined by its two-particle reduced
density matrices.
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�AB, �BC, �AC which are supposed to be the reduced states
A fundamental question in quantum information
theory is to understand the different types of correlations
that quantum states can exhibit. A particular issue for a
quantum state shared among n parties is the extent to
which the correlations between these parties is not attrib-
utable to correlations between groups of fewer than n
parties. In this Letter, we introduce a way of character-
izing this irreducible n-party correlation for general
states of n parties. Our characterization is based on
measuring the information in the given quantum state
of n parties that is not already contained in the set of
reduced states of n� 1 parties.

These considerations lead us to consider the specific
case of pure states of three qubits. We find the striking
result that, for almost all such states, there is no more
information in the full quantum state than is already con-
tained in the three two-party reduced states. Expressed
differently, the two-party correlations uniquely deter-
mine the three-party correlations.

In order to explain our construction, let us first treat the
case of states of two parties; the local Hilbert spaces may
have any dimension. Let the (generally mixed) state be
�AB. We ask how much more information there is in �AB
than is already contained in the two reduced states �A and
�B. We address this question by finding another state ~��AB
which is the most mixed state, i.e., the state of maximum
entropy, consistent with the reduced states. Thus, ~��AB
contains all the information in �A and �B but no more
[1]. A simple calculation using Lagrange multipliers
shows that ~��AB has the form

~��AB � exp��A � 1B � 1A ��B�: (1)

1A and 1B denote the identity operators on the Hilbert
spaces of particles A and B, respectively. �A and �B come
from the Lagrange multipliers and are to be determined
by the condition that the reduced states of ~��AB are re-
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~��AB � �A � �B: (2)

In the case that �A and �B do not have full rank, this
calculation is a little delicate, since then the Lagrange
multipliers as they appear in Eq. (1) are formally infinite.
In that case, we can restrict the Lagrange multipliers to
the ranges of �A and �B. Then Eq. (1) defines ~��AB only on
the subspace in which it is nonzero, but Eq. (2) remains
valid.

The difference S�~��AB� � S��AB�, where S is the von
Neumann entropy, can be interpreted as the amount of
information in �AB that is not contained in �A and �B. In
fact, S�~��AB� � S��AB� is equal to the quantum mutual
information S��A� � S��B� � S��AB�, which measures
the degree of correlation in �AB. (Alternatively, we could
use any measure of distance between ~��AB and �AB to
express the degree of correlation [2].) We use the word
‘‘correlation’’ rather than entanglement since, for mixed
states, ~��AB will have greater entropy than �AB if �AB is
separable but not of product form. For pure states, how-
ever, S�~��AB� � S��AB� if and only if �AB is of product
form, and in this case the difference S�~��AB� � S��AB� is,
except for a factor of 2, the standard measure of bipartite
entanglement [3]. We also note that, for a pure state with
reduced states �A and �B, there are typically many states
of two parties having the same reduced states. This is in
contrast to the case for more parties, as we see below.

We now turn to the more interesting case of quantum
states of more than two parties; the local Hilbert spaces
may again have any dimension. For ease of exposition, we
treat the three-party case explicitly; the extension to more
parties follows straightforwardly. Consider, then, a gen-
eral three-party state �ABC. We ask how much more
information there is in �ABC than is already contained
in the three reduced states �AB, �BC, �AC.

Before we analyze this situation, we point out that there
are a number of new issues in the three-party case that do
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of some (possibly mixed) state of three parties. These
three must certainly satisfy some consistency conditions:
the reduced state �A can arise from both �AB and �AC,
and this puts constraints on these two reduced bipartite
states. However, a set of states satisfying this condition
(and the analogous ones for each of the other parties) may
still not correspond to a legitimate state of three parties.
Consider the following set of reduced states which are
supposed to be the reduced states of some state of three
qubits: �AB, �BC, �AC are all singlets held between the
given pairs, e.g.,

�AB �
1���
2

p �j0iAj1iB � j1iAj0iB�: (3)

The reduced states of the individual parties are all the
maximally mixed state of a qubit and so are consistent
with each other; however, it is easy to convince oneself
that these putative reduced states are not the reduced state
of any three-party state of three qubits.
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We now return to the main theme of our discussion. We
are given a general three-party state �ABC.We argue that a
measure of the irreducible three-party correlations in the
state is the entropy difference between the state itself and
the three-party state ~��ABC that contains no more infor-
mation than the reduced states. As in the two-party case,
we may use Lagrange multipliers to find ~��ABC. If �ABC
has maximal rank, then ~��ABC is of the form

~��ABC � exp��AB � 1C ��AC � 1B ��BC � 1A�: (4)

Here �AB, �BC, and �AC come from the Lagrange multi-
pliers and are to be determined by the condition that the
reduced states of ~��ABC be those of �ABC. Unlike the case
of two parties, we have not been able to calculate these
Lagrange multipliers in closed form, in general.
Nonetheless, the form of ~��ABC is illuminating. Consider
a completely general state of three parties. It can be
expanded using a basis of operators composed of tensor
products of operators spanning each individual Hilbert
space. For example, for three qubits, a general mixed
state may be written as
�ABC �
1

8
� 1 � 1 � 1� 	i�i � 1 � 1� �i1 � �i � 1� 
i1 � 1 � �i � Rij�i � �j � 1

� Sij�i � 1 � �j � Tij1 � �i � �j �Qijk�i � �j � �k�; (5)
since the set of matrices �1; �x; �y; �z� is a basis for the
operators on C2. It is not the case that the tensor Q
describes the three-party correlations (consider a density
matrix which is of the form �A � �B � �C—it has
nonzero Q). However, the discussion above shows that,
for generic density matrices, a state which has all its
information contained in its reduced states has the
property that its logarithm has no term of the form
qijk�i � �j � �k.

In a number of places in the above discussion, we have
noted that the case when the states have nonmaximal
rank may need careful treatment. For example, one
clearly cannot take the logarithm of such a state to
determine whether its information is contained in its
reduced states. A particularly important class of states
of nonmaximal rank is the set of pure states. As we now
see, this set has surprising properties.

Let us consider the particular case of a system of three
qubits. All pure states of this system are equivalent under
local unitary transformations to states of the following
form [4]:

j�i � aj000i � bj001i � cj010i � dj100i � ej111i:

(6)

The labels within each ket refer to qubits A, B, and C in
that order. We now show that almost all of these states
have no irreducible three-party correlation in the sense
developed in this Letter. That is, we show the following:
except when the parameters a; b; c; d; e have certain spe-
cial values, the state j�i is the only state (pure or mixed)
consistent with its two-party reduced states.
Let ! be a three-qubit density matrix whose two-
particle reduced states are the same as those of j�i. We
can think of ! as obtained from a pure state j i of a
larger system, consisting of the three qubits and an envi-
ronment E: thus, ! � TrEj ih j. To get a constraint on
the form of j i, consider the state �AB of qubits A andB as
obtained from j�i:

�AB � j!0ih!0j � j!1ih!1j; (7)

where the unnormalized vectors j!0i and j!1i are

j!0i � aj00i � cj01i � dj10i;

j!1i � bj00i � ej11i:
(8)

We insist that j i give this same �AB when restricted to
the pair AB. Because �AB is confined to the two-
dimensional space spanned by j!0i and j!1i, j i must
have the form

j i � j!0ijE0i � j!1ijE1i; (9)

where jE0i and jE1i are vectors in the state space of the
composite system consisting of qubit C and the environ-
ment E. Computing the density matrix of AB from Eq. (9)
and comparing it with Eq. (7), we see that jE0i and jE1i
must be orthonormal. It is helpful to expand jE0i and jE1i
in terms of states of C and states of E:

jE0i � j0ije00i � j1ije01i; jE1i � j0ije10i � j1ije11i:

(10)
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Here the environment states jeiji are a priori not neces-
sarily either normalized or orthogonal. Combining
Eqs. (8)–(10), we can write

j i � �aj00i � cj01i � dj10i��j0ije00i � j1ije01i�

� �bj00i � ej11i��j0ije10i � j1ije11i�: (11)

In order to see what further constraints are imposed on
j i by the requirement that the reduced states agree with
j�i for the other pairs, let us consider three specific
elements of the two-party density matrices.

h11j�BCj11i: As computed from the state j�i, this
matrix element has the value jej2. As computed from
Eq. (11), it has the value jcj2he01 j e01i � jej2he11 j e11i.

h11j�ACj11i: As computed from j�i, this matrix ele-
ment has the value jej2. As computed from Eq. (11), it has
the value jej2he11 j e11i � jdj2he01 j e01i. Hence, for ge-
neric values of c; d, and e, je01i � 0 and he11 j e11i � 1,
from which it follows that je10i � 0 and he00 j e00i � 1.

h01j�BCj10i: As computed from j�i, this matrix ele-
ment has the value bc�. As computed from Eq. (11) (with
je01i � je10i � 0), it has the value bc�he00 j e11i. We con-
clude, again for generic values of the parameters, that
je00i � je11i.

Inserting these inferences into Eq. (11), we find that

j i � �aj000i� bj001i� cj010i�dj100i� ej111i�je00i:

(12)

When we trace out the environment to get the state !, we
see that we must have !� j�ih�j. That is, the only state
(pure or mixed) consistent with the two-particle reduced
states of j�i is j�i itself.

The above treatment deals simply with the generic pure
state of three qubits. We have found it necessary to use a
slightly more involved analysis, to be found in the
Appendix, to identify those special states for which the
two-party reduced states do not uniquely determine the
full three-party state. The results in the Appendix show
that the only states that do not have this generic property
are those which are equivalent under local rotations to
states of the form

aj000i � bj111i: (13)

The results of this Letter clearly raise many questions.
For example, whether the properties that we have found
for generic pure states of three qubits extend to systems of
more parties and in higher dimensional Hilbert spaces
[5]; we intend to return to this in a future publication.
Also, it is interesting to find nontrivial classes of n-party
states that are determined by their reduced states of fewer
than n� 1 parties and to characterize their entanglement
properties. An example is the family of states

aj0001i � bj0010i � cj0100i � dj1000i: (14)

These states are uniquely determined by their two-party
reduced states.
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Finally, we note that many of the ideas we have put
forward here also shed light on classical probability dis-
tributions [6]. For example, the idea of characterizing
the n-party correlations using the information in the
�n� 1�-party marginal distributions. In light of our re-
sults on pure states of three qubits, it is intriguing to
consider the case of probability distributions P�X; Y; Z�
of three random variables, each of which has two values;
such a distribution arises from local von Neumann mea-
surements on states of three qubits. In this case, it is not
difficult to see that generic distributions are by no means
determined by their marginal distributions. Consider a
given set of probabilities pijk where p000 is the probability
that X � 0, Y � 0, Z � 0, etc. The set of probabilities
qijk � pijk � '��1�(�ijk� has the same two-party mar-
ginal distributions, where ' is a constant and (�ijk� is
the parity of the bit string ijk.
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conversations. We gratefully acknowledge funding from
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Appendix.— Consider an arbitrary pure state j�i �P
ijk aijkjijki of three qubits A, B, and C. We give an

alternative derivation that, for generic aijk, j�i is uniquely
determined by its two-party reduced states and find those
states for which this is not true.

We can quickly dispose of the case in which j�i is the
product of a single-qubit state and a two-qubit state. In
that case, the two-party reduced states determine both
factors in the product and, therefore, determine j�i
uniquely. In what follows, we assume that j�i does not
have this product form.

A general state that agrees with j�i in its reduced states
can always be obtained from a pure state j i of the three
qubits plus an environment E. Let us first ask what form
j i must take in order to be consistent with the (generally
mixed) state of the pair AB derived from j�i. By an
argument essentially identical to the one leading to
Eq. (11), we find that j i must be of the form

j i �
X

ijkl

aijljijkijelki: (15)

Here l takes the values 0 and 1, and the states jelki, which
are states of E alone, satisfy the orthonormality condition

X

k

helk j el0ki � 'll0 : (16)

Similarly, by considering AC and BC, we see that

j i �
X

ijkl

ailkjijkijflji �
X

ijkl

aljkjijkijglii; (17)

with
P
jhflj j fl0ji � 'll0 and

P
ihgli j gl0ii � 'll0 . Here we

regard the coefficients aijk as fixed — that is, the state j�i
is fixed — and we are looking for environment vectors
jelki, jflji, and jglii that satisfy the various linear equa-
tions arising from the fact that the three expressions for
j i in Eqs. (15) and (17) must all be equal.
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It is instructive to write down explicitly, as an example,
the two equations arising from (15) and (17) that involve
only the vectors je00i, je10i, jf00i, and jf10i:

a000je00i � a001je10i � a000jf00i � a010jf10i; (18)

a100je00i � a101je10i � a100jf00i � a110jf10i : (19)

Notice that these two equations are linearly independent:
if they were not, then the state j�i would be factorable
into a single-qubit state and a two-qubit state, contrary to
our current assumptions.

These equations and analogous ones relating jelki to
jglii and jflji to jglii can be solved fully, and one finds that
the general solution for the vectors jelki is

je01i � �a011a101 � a111a001�jvi;

je10i � �a000a110 � a100a010�jvi;

je00i � �a100a011 � a101a010�jvi � jwi;

je11i � �a000a111 � a001a110�jvi � jwi;

(20)

the vectors jvi and jwi being arbitrary. The corresponding
expressions for the f and g vectors can be obtained from
Eq. (20) by permuting indices; for example, the expres-
sion for each f vector is obtained from the expression for
the corresponding e vector by permuting the last two
indices of every aijk (without changing the vectors jvi
and jwi). Thus, once the two vectors jvi and jwi have been
chosen, the solution is determined. The form of the solu-
tion shows that at most two dimensions of the environ-
ment can ever be used.

We have not yet taken into account the orthonormality
conditions for the environment states. Let us now con-
sider just Eq. (16) which constrains the e vectors. It is
helpful to rewrite Eq. (20) in terms of a new arbitrary
vector jzi that replaces jwi:

je01i � 	jvi; je10i � �jvi;

je00i � jzi; je11i � jzi � 
jvi;
(21)

where 	 � a011a101 � a111a001, � � a000a110 � a100a010,
and 
 � a000a111 � a001a110 � a100a011 � a101a010. In
terms of these parameters, the orthonormality condition
of Eq. (16) is expressed by the following three equations:

hz j zi � j	j2hv j vi � 1;

hz j zi � �j�j2 � j
j2�hv j vi � 
hz j vi � 


hv j zi � 1;


		
hv j vi � �hz j vi � 
		hv j zi � 0:
(22)

Taking the difference between the first two of these
equations, and treating separately the real and imaginary
parts of the third, we obtain three homogeneous linear
equations for the three real variables hv j vi, Rehz j vi,
and Imhz j vi. For generic values of 	, �, and 
, these
three equations are linearly independent, so that the only
solution is jvi � 0. This in turn implies, by Eq. (20), that
je01i � je10i � 0 and je00i � je11i. Thus, in this generic
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case only a single dimension of the environment is
used — that is, the environment is in a pure state — and
the qubits ABC must be in the given state j�i.

This conclusion can be avoided only if the determinant
D of the 3
 3 matrix associated with the three homoge-
neous linear equations vanishes, and the corresponding
determinants computed from the two other orthonormal-
ity conditions (for the vectors f and g) are also zero.
Computing D explicitly, we find that D � 0 if and only
if (i) j	j � j�j and (ii) 


2	� is real and non-negative.

Suppose now that j�i is not determined by its two-
party reduced states, so that the above conditions (i) and
(ii) must be satisfied. These conditions imply that there
exists a local rotation on qubit C that will bring both 	
and � to zero, thus bringing j�i to the form

jpAijpBij0i � jqAijqBij1i: (23)

Here jpAi and jqAi are (unnormalized) vectors in the
space of qubit A, and jpBi and jqBi belong to qubit B.
We now use in a similar way the conditions analogous to
(i) and (ii) but derived from the orthonormality relations
for the f vectors. These imply that we can apply to the
form (23) a local rotation on qubit B to bring it to the form
jpAij0ij0i � jqAij1ij1i. Finally, from the conditions de-
rived from the g vectors, it follows that we can rotate
qubit A and arrive at the form aj000i � bj111i.

We conclude, then, that the only pure three-qubit states
that might not be uniquely determined by their two-
particle reduced states are those that are equivalent under
local rotations to the form given in Eq. (13). In fact, it is
easy to see that for any state of this form with a � 0 and
b � 0, there do exist other three-qubit states — e.g., a
mixture of j000i and j111i — having the same two-party
reduced states.
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