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Quantum Information Processing with Large Nuclear Spins in GaAs Semiconductors
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We propose an implementation for quantum information processing based on coherent manipulations
of nuclear spins I � 3=2 in GaAs semiconductors. We describe theoretically an NMR method which
involves multiphoton transitions and which exploits the nonequidistance of nuclear spin levels due to
quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a
generalized rotating frame, valid for arbitrary I, which allow us to describe the nonperturbative time
evolution of spin states generated by magnetic rf fields. We identify an experimentally observable
regime for multiphoton Rabi oscillations. In the nonlinear regime, we find Berry phase interference.
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results in spin anisotropies and thus in nonequidistant
energy levels—being a necessary condition for our
scheme. The theoretical problem then is to find one mag-

state evolutions, i.e., control over amplitudes am to form a
desired superposition j i �

P
I
m��I amjmi of the nuclear

basis states jmi (eigenstates of H 0). Our goal is now to
Recent advances in spintronics [1] have shown that
the coherent control of electron and nuclear spins
in semiconductors is experimentally feasible, enabling,
in particular, an all-optical NMR in GaAs, based on
the hyperfine interaction between electrons and nuclei
[2,3]. Such a control of nuclear spins can also be achieved
via electrical gates as recently demonstrated for GaAs
heterostructures in the quantum Hall regime [4], or even
via conventional NMR directly accessing the nuclei [5].
In the present work, we show that such advances in
coherent spin control have opened up the possibility to
manipulate the nuclear spins I for the purpose of quantum
information processing, thereby presenting a scheme that
is based on ensembles of large spins I > 1=2 instead of
qubits. Nuclear spins are ideal candidates for this purpose
due to their long decoherence times.

An implementation of the Grover algorithm [6] has
recently been proposed for molecular magnets [7], based
on a perturbative approach to the unitary Grover opera-
tions which encode and decode the information stored in
the phases of small amplitudes am [8]. An alternative
version of Grover’s algorithm was presented in
Refs. [9,10] that is described by a Hamiltonian that lets
a completely delocalized state of the form j i �P
I
m��I amjmi, in some basis states jmi with equal occu-

pation probabilities jamj2, evolve into a wanted localized
state jMi, where j i and jMi are degenerate and have a
finite overlap. The information is encoded in the energies
of jmi. In order to produce j i, we propose here a novel
NMR scheme that allows us to generate any desired
distribution of amplitudes am, being not restricted to
small values. For this we specifically exploit the proper-
ties of GaAs nuclei where quadrupolar spin splitting
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netic rf pulse—inducing a unitary time evolution of
the spins—that produces the desired spin state j i
and a second rf pulse that lets j i evolve into jMi,
given certain spin anisotropies and adjustable magnetic
fields (see below). In a nonperturbative approach, we
find an analytic solution to this problem, valid for
arbitrary spin I. For the special case of GaAs with
I � 3=2, we have confirmed our analytical results by
exact numerics. In contrast to previous work [7]
our method also holds for vanishing detuning energies,
which turns out to be essential to perform nonperturba-
tive unitary operations, i.e., quantum computations
(QCs). Once the control over 2I magnetic fields is estab-
lished, the scheme proposed here allows for QC and
quantum storage with a single pulse, provided that
there is sufficient signal amplification due to the spin
ensemble [11].

As a first step towards this goal, it is useful to generate
and monitor multiphoton Rabi oscillations, as we de-
scribe in detail below. Finally, we show that oscillating
quadratic transverse spin terms, which can be generated
by optical pulses in GaAs [3,12], give rise to Berry phase
oscillations [13] in the transition probabilities.

In the following we mainly focus on a nuclear spin of
length I � 3=2, as appropriate for GaAs, but indicate
its generalization to arbitray I. Our nuclear spin system
is described by the Hamiltonian H 0 � H Z �H Q,
consisting of the nuclear Zeeman energy H Z �
�gN
NHzIz, gN � 1:3 [2], and the quadrupolar splitting
[5] H Q � A�3I2z � I�I � 1�	. The quadrupolar constant
is A � 7 
 10�7 K for 69Ga, A � 3 
 10�7 K for 71Ga,
and A � 2 
 10�6 K for 75As nuclei[3]. For the purpose
of QC we need to achieve complete control over unitary
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FIG. 1. Multiphoton transition schemes for the coherent
population of the Iz eigenstates jmi of a nuclear spin I �
3=2. (a) Quantum computation (QC) scheme: the frequencies
!k of the fields Hk are red ( - � ) and blue (- -) detuned.
Diagrams containing blue detunings are negligible for large
quadrupolar splitting, i.e., A� �h�k � 0. (b) Rabi oscillation
(RO) scheme: the magnetic fieldsH0

k cos�!0
kt� �0

k�, k � 1; 2; 3,
give rise to k-photon RO.
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show that such a control over am is indeed feasible under
experimentally attainable conditions.

We start from a configuration where mainly the ground
state j3=2i is populated; see Fig. 1. This can be achieved
by the Overhauser effect [14]. The next goal is to
coherently populate all or a part of the excited states
jmi, m � 3=2, by means of �m � one-, two-, and
three-photon transitions. Figure 1 shows the two transi-
tion schemes, QC and RO, which will turn out to be
appropriate for quantum computation and multiphoton
Rabi oscillations, respectively. In the QC scheme the
frequencies !k of the external transverse magnetic fields,
Hx;k�t� � ~HHk�t� cos�!kt� �k�, k � 1; 2; 3, are blue
(�k < 0) and red (�k > 0) detuned with respect to the
energy level separations �h!m;m0 . In the RO scheme, the
transverse fields H0

x;k�t� � ~HH 0
k�t� cos�!0

kt� �0
k�, k �

1; 2; 3, oscillate at frequencies !0
�m � !3=2��m;3=2=�m,

which are blue detuned by 3A (6A) for the two(three)-
photon transition. For GaAs, !k;!

0
k � 10 MHz with

�k � 1 kHz, and a longitudinal magnetic field Hz � 1 T
is appropriate. It is desirable to make Hz sufficiently large
to accommodate many spin precessions before the spins
dephase. We note that in contrast to the fields Hx;k�t�, the
fields H0

x;k�t� lead to transitions governed by noncommut-
ing operators, with the important consequence that the
RO scheme suffers from strong interferences between the
transitions if two or more fields H0

x;k�t� are nonzero,
leading to a quick loss of amplitude control. Indeed,
the RO scheme allows control of am 0s only for times
t
 2 �h�V0

k � V 0
k0 �=V

0
kV

0
k0 , which we estimate from the

Baker-Campbell-Hausdorff formula and which we con-
firmed by exact numerical calculations. Here, V 0

k �
2��gN
NH0

k�
kp3=2�k;3=2	=

Q
k�1
j�1 �h!3=2�j;3=2 (see below).

Although the RO scheme is suited only for QCs using
perturbative approaches, it has its usefulness for testing
the coherence of the spin system (see below).
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Now we proceed with demonstrating the existence of
the desired spin transitions in the QC scheme. For this we
evaluate the transition amplitudes for the diagrams of
Fig. 1(a) in high-order perturbation theory which allows
us then to obtain an appropriate nonperturbative
Hamiltonian (see below). The three transverse fields
Hx;k�t� complete the Hamiltonian H � H 0 � V�t�,
where V�t� �

P
3
k�1 gN
N

~HHk�t� cos�!kt� �k�Ix, with
Ix � �I� � I��=2, and phases �k (see below). Then we
expand the S operator S �

P
1
j�0 S

�j� in powers of V�t�. We
use rectangular pulse shapes of duration T for all fields,
i.e., ~HHk�t� � Hk for �T=2< t < T=2, and 0 otherwise.
Then we obtain
~SS�3�
�3

2;
3
2

�
Y3

k�1

Hke�i�k

�
1

�1�2
�

1

�1�
6A
�h � �1 � �2�

�
1

6A
�h � �1 � �2

�
1

�2
�

1
12A

�h � �1

�
�

1
12A

�h � �2

�
1

6A
�h � �1 � �2

�
1

12A
�h � �1

��
(1)

�2� Q
2 �i� 1 1
for �3 � 0, ~SS

�1
2;

3
2

� k�1Hke k�� �1
� 6A

�h��1
� for �2 �

0 and H3 � 0, and ~SS�1�1
2;

3
2
� H1e

�i�1 for �1 � 0 and H2 �

H3 � 0, where S�j�3
2�j;

3
2
� 2�

i �
gN
N

4 �h �j~SS�j�3
2�j;

3
2
p3

2�j;
3
2
��T��!3

2�j;
3
2
�Pj

k�1!k�, pm;m0 �
Q
m0

k�mhkjI�jk� 1i, and ��T��!� �
1

2�

R�T=2
�T=2 e

i!tdt � sin�!T=2�
�! is the delta function of width

1=T. The energy is conserved for !T � 1. Also, the
duration T of the rf pulses must not exceed the dephasing
time !" of the spin states. Interestingly, limA!0 S

�3�
�3

2;
3
2
�

limA!0 S
�2�
�1

2;
3
2

� 0; i.e., destructive interference is

maximal. However, if A� �hj�kj, k � 1; 2; 3, destructive
interference is negligible.
Now we are in the position to extract an effective
Hamiltonian, which governs the desired unitary evolu-
tions[9,10]. For the QC scheme we use the Hamilto-
nian H . After applying the rotating wave approximation
[5] we keep only the most left diagram of Fig. 1(a), which
gives the dominant contribution to the transition ampli-
tudes for �hj�kj 
 jAj. This is a direct consequence of the
nonequidistance of the energy levels jmi due to the quad-
rupolar splitting. It is now possible to eliminate the time
dependence of H by a unitary operation U�t�, the matrix
elements of which can be determined by solving 2I linear
equations. This is a transformation to a generalized
rotating frame. Then, for a spin I we obtain an effective
207601-2



FIG. 2 (color). Preparation of jsi � �1=
���
3

p
�
P3=2
m��1=2 jmi by

means of Eq. (2) for 71Ga nuclei in the QC scheme, which takes
about 0.2 ms for H1 � H2 � 1 G, H3 � 0, �1 � 6083 s�1, and
�2 � 0. The duration of the QC operation is � 1=2%�2�Rabi. The
analytical result is confirmed by numerics. Note that a�3=2 � 0.

FIG. 3 (color). Grover algorithm calculated by means of
Eq. (2) in the QC scheme (numerically confirmed), where jsi �
�1=

���
3

p
�
P3=2
m��1=2 jmi is concentrated mainly into j � 1=2i after

0.55 ms for H2 � �h�2=2gN
N � 1 G, h1 � h2, h3 � 0, �1 �
0. The duration of the QC is � 1=2%�2�Rabi. Note that a�3=2 � 0.

FIG. 4 (color). Numerical solution for the three-photon ROs
of 75As nuclei between j3=2i and j � 3=2i driven by H0

3 � 20 G
with the RO scheme (b) in cw mode. H0

1 � H0
2 � 0.
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time-independent Hamiltonian

H �2I�
rot �

2
666666664

0 h1 0 � � � 0

h1 �h�1 h2
. .

. ..
.

0 h2 �h�2
. .

.
0

..

. . .
. . .

. . .
.

h2I

0 � � � 0 h2I �h�2I

3
777777775
; (2)

where hk � gN
NHk

�����������������������������
k�2I � 1 � k�

p
=2 (k � 1; . . . ; 2I).

Focusing on I � 3=2, we obtain, e.g.,
for H3 � 0 approximately H �2� � H 0 �
h1ei�!1t��1�j3=2ih1=2j � h2ei�!2t��2�j1=2ih�1=2j � H:c:
Applying U�t� � e�i��!1�!2�t���1��2�	=2j3=2ih3=2j�
ei��!1�!2�t���1��2�	=2j1=2ih1=2j � ei��!1�!2�t���1��2�	=2 


j�1=2ih�1=2j yields H �2�
rot . Note that the Hamiltonian in

Eq. (2) remains valid even in the limit �k ! 0, where
perturbation expansions such as in Eq. (1) break down.
However, we must require that jgN
NHkj 
 jAj, which
means that the larger the jAj, the faster the QCs.
Propagators of the form Uy�t�e�iH

�2I�
rot t= �h have 2I phases

�k and 2I detunings �h�k, which determine the 2I phases
and the 2I moduli of am [15].

For Grover’s algorithm [9,10] we must first produce
jsi � �1=

���
n

p
�
P
m jmi (see Fig. 2), n being the number of

basis states involved in the search. Then we make use of
the degeneracy between jsi and jMi, which yields the
resonance condition hk � �h�I�M=2 � 0 8 k, if �k �
0 8 k � I �M. In contrast to [9,10], H �2I�

rot has only
nearest-neighbor coupling, which results in a decreasing
amplification of jMi with increasing I or jMj. However,
even for the largest nuclear spin I � 9=2, we find that the
resolution for identifying jMi is still sufficient ( * 10%).
In Fig. 3 jM � �1=2i is found out of the three states jmi
m � 3=2; 1=2;�1=2, for I � 3=2.

As a first test for the proposed schemes, it would be
useful to measure generalized ROs involving multiphoton
207601-3
absorptions. They can be thought of as nutation of the
large spin I between spin states jmi. First, we consider the
QC scheme. For the two-photon RO, with frequency %�2�Rabi,
to become observable, we need jgN
NHkj 
 �h�1, k �
1; 2, so that the one-photon transitions are completely
suppressed. To obtain %�2�Rabi, it is useful to think of (2) as
describing the dynamics of a (fictitious) particle in a
triple well with nearest-neighbor tunnel coupling hk.
The independent control of the tunnel couplings hk and
the biases �h�k between the wells are ensured by a large
value of A. Then, the energy (‘‘tunnel’’) splitting [16]
between j3=2i and j � 1=2i reads for �2 � 0 as follows:

��2�
Rabi �

���
3

p
�gN
N�

2H1H2=�1; (3)

which gives %�2�Rabi � ��2�
Rabi=2� �h. In order to obtain large

Rabi frequencies %�2�Rabi, the external fields H1; H2 and the
detuning �h�1 are to be maximized under the conditions
jH1j; jH2j 
 �hj�1j=gN
N 
 jAj=gN
N [17], i.e., the
larger the jAj the larger %�2�Rabi can be achieved. We note
207601-3



FIG. 5 (color). Numerical solution for the two-photon ROs of
75As nuclei between j3=2i and j � 1=2i, driven by H0

2 � 10 G
according to the RO scheme in cw mode, and H0

1 � H0
3 � 0.
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FIG. 6. Berry phase oscillation. The three-photon transition
probability vanishes where �0�3�

Rabi is zero.
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that jAj could, e.g., be enhanced by optical laser pumping
[3] or by modulated electric field gradients [12].

Next we turn to the RO scheme. Here it is sufficient to
apply only one single field H0

x;k�t� in order to see the
multiphoton ROs shown in Figs. 4 and 5. We now also
allow for oscillating quadratic transverse anisotropies
which can be externally generated by modulating the
electric field gradient felt by the nuclei [3,12]. For this
we adopt the most general Hamiltonian [5]

H 0 � A�3I2z � I�I � 1�	 � gN
NHzIz
� ei!

0
ktIz��h0kIx � B�IxIz � IzIx�

� C�I2x � I2y�	e
�i!0

ktIz ; (4)

where h0k � gN
NH
0
k (k � 1, 2, or 3). Next we

transform H 0 to the rotating frame, which yields H 0
rot �

A�3I2z � I�I � 1�	 � �gN
NHzIz � �h!0
k�Iz � B�IxIz �

IzIx� � C�I2x � I2y� � h0kIx. Then the time evolution takes
the simple form j �t�i � ei!

0
ktIze�iH

0
rott= �hjIi. Although the

transverse quadratic term C is not in resonance with any
transition energy, it leads to a time-independent trans-
verse quadratic anisotropy in the rotating frame. For
the 3-photon transition in the RO scheme we obtain the
following Hamiltonian in the rotating frame:

H 0�3�
rot �

2
666664

3A
��
3

p

2 h
0
3

���
3

p
C 0��

3
p

2 h
0
3 �3A h03

���
3

p
C���

3
p
C h03 �3A

��
3

p

2 h
0
3

0
���
3

p
C

��
3

p

2 h
0
3 3A

3
777775; (5)

where we have neglected the B term since we choose
B
 h03. Inserting a typical value C � �10�10 K [3],
we obtain oscillations of the splitting �0�3�

Rabi between
j3=2i and j � 3=2i as a function of H0

3; see Fig. 6. These
oscillations are due to the Berry phase in a biaxial spin
system as shown in [13]. Note that C must be negative for
the Berry phase interference to occur [13]. Also, the
Berry phase interference is present only for �m-photon
transitions with �m � 2. In Figs. 4 and 5 the population-
207601-4
probabilities jam�t�j
2 are shown for C � 0. The

corresponding normalized magnetization reads M�t� �P
m mjamj

2.
In conclusion, we have shown that via multiphoton

transitions a controlled superposition of spin states can
be achieved by appropriate field pulses. Our results can be
extended to arbitrary spin I and to any single-particle
quantum system with nonequidistant energy levels.
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