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Quantum Dots with Rashba Spin-Orbit Coupling
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We present results on the effects of spin-orbit coupling on the electronic structure of few-electron
interacting quantum dots. The ground-state properties as a function of the number of electrons in the dot
N are calculated by means of spin-density functional theory. We find a suppression of Hund’s rule due to
the competition of the Rashba effect and exchange interaction. Introducing an in-plane Zeeman field
leads to a paramagnetic behavior of the dot in a closed-shell configuration and to spin texture in space.
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heterostructure. Because of the lack of inversion symme-
try along the growth direction z of the heterostructure conclusions can be drawn: (i) Each degenerate level E�0�
Spin-related phenomena have attracted great attention
recently as they are the key ingredient in the emerging
field of spintronics [1]. Among these, spin-orbit (SO)
coupling mechanisms in semiconductors provide a basis
for device applications and a source of interesting physics,
especially in systems with reduced dimensionality.
Transport through chaotic quantum dots in the presence
of SO interaction has been studied both experimentally
[2] and theoretically [3,4], while the effect of SO coupling
on the spin lifetime has been investigated in Ref. [5].
Here, we are interested in how the electronic properties
of few-electron quantum dots, such as the addition energy
[6,7] or the spin properties of the dot ground state [8], are
affected by Rashba SO interaction [9,10]. These questions
are interesting from the theoretical point of view for the
following reasons. First, the Rashba effect has a different
form than the usual SO coupling term in real atoms.
Second, the tunability of the Rashba effect [11–13] allows
dramatic SO effects to occur in quantum dots with few
electrons; in real atoms this requires heavy nuclei and,
hence, a more complicated electronic structure.

We start by describing the physics of a quasi-zero-
dimensional system with Rashba SO at the noninteracting
electron level, providing analytical results for the single-
particle spectrum when the SO coupling can be treated as
a perturbation. Then we introduce the electron-electron
interaction in the framework of spin-density functional
theory (SDFT) [14]. This allows us to study how the
addition spectrum is modified by varying the strength
of SO coupling. Studying the spin properties of the many-
particle ground state, we find a suppression of Hund’s
rule, when the SO coupling can still be treated as a
perturbation for the single-particle problem. For higher
strengths, it affects the single-particle spectrum so
strongly that it gives rise to a completely different addi-
tion spectrum. The introduction of an in-plane magnetic
field leads to a paramagnetic behavior of the dot in a
closed-shell configuration and to spin texture in space.

Quantum dots are often realized by lateral confinement
of a two-dimensional electron gas (2DEG) obtained in a
0031-9007=02=89(20)=206802(4)$20.00
[9,10], the electrons in the 2DEG are subject to the
Rashba spin-orbit coupling Hamiltonian

Hso �
�hkso
m

��xpy � �ypx�: (1)

The strength of the SO coupling, here denoted as kso, can
be tuned by changing the asymmetry of the quantum well
via externally applied voltages, as shown in several ex-
perimental studies [11–13].

It is interesting to study the effect of the SO coupling
term Eq. (1) on the quantum mechanics of a quasi-zero-
dimensional system [15]. To this end, we consider a
two-dimensional quantum dot defined by a parabolic
confining potential

Vconf�x; y� �
m
2
!2�x2 � y2�: (2)

Thus, the single-particle Hamiltonian in the effective-
mass approximation reads

H �
p2x � p2y
2m

� Vconf�x; y� �Hso: (3)

In the absence of SO coupling, the eigenenergies are

E�0�
M � �h!�M� 1�; (4)

with M being a non-negative integer. A degenerate sub-
space SM of dimension DM � 2�M� 1�, where the factor
2 is due to spin, is associated to each energy E�0�

M .
We will now treat Hso as a perturbation. This is valid as

long as ksol! � 1, where l! is the oscillator length�����������������
�h=�m!�

p
. We obtain for the second-order eigenenergies

~EEM;i;� � E�0�
M � �h!�ksol!�

2�2�i� 1� � �M� 1��; (5)

where i � 1; . . . ;M� 1, and � � 	1 is the quantum
number relative to �z, i.e., the spin projection along z.
As the single-particle levels will play an important role in
the following, we show an example of the low-energy part
of the spectrum calculated using Eq. (5) together with the
results of numerical diagonalization in the upper panel of
Fig. 1. From the perturbative treatment the following
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FIG. 1 (color online). (a) Low-energy part of the single-
particle spectrum for the dot, calculated both by perturbation
theory (dots) and by numerical diagonalization (squares) for
ksol! � 0:2633 [this value corresponds to the data for kso �
0:01 nm�1 for the addition energies of the realistic dot shown
in panel (b)]. The label p is an index that enumerates the
eigenstates in order of ascending energy. Inset: Low-energy
part of the single-particle spectrum calculated numerically for
ksol! � 0:7896 [this value corresponds to kso � 0:03 nm�1 in
panel (b)]. In this case the SO coupling dominates the single-
particle spectrum. (b) Addition energy vs number of electrons
in the dot for different values of the SO coupling strength. In
this figure and in the following ones, the dot is defined by a
confining potential of strength �h! � 5 meV.
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is split in M sublevels, each of which is double degenerate
due to Kramers theorem; (ii) spin rotational invariance is
broken but still the eigenstates are (to this order in per-
turbation theory) eigenstates of �z. From conclusion (i)
we can infer that SO coupling changes the addition
spectrum of the dot, while conclusion (ii) tells us that
the Rashba effect will not influence the lifetime of the
eigenstates of �z. For values of kso for which perturbation
theory breaks down, the eigenenergies are of course still
grouped in Kramers-degenerate sublevels [as shown in
the inset of Fig. 1(a)], although it can happen that differ-
ent sublevels have almost the same energy.

To introduce the Coulomb interaction between the elec-
trons we use SDFT, in the local density approximation
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[14]. We write the Kohn-Sham equation [16] in spinor
notation

��
�
�h2

2m
r2 � Vconf � Vcoul

�
1 �

Hso � Vexch-corr

�
�j � "j�j; (6)

where Vcoul is the Hartree potential, Vexch-corr the
exchange-correlation potential, 1 the identity matrix in
spin space, and �j is a two-component spinor. The spin-
dependent exchange-correlation potential is introduced
following Ref. [14]. It is in general nondiagonal in spin
space (it becomes diagonal in the basis that diagonalizes
the spin-density matrix). For the exchange-correlation
energy, we use the Tanatar and Ceperley parametrized
form [17]; in particular, for the case of partial spin polar-
ization we use the interpolation scheme of Refs. [8,14].We
solve Eq. (6) self-consistently by discretizing it in real
space. The addition energy (also called capacitive energy
by some authors [7]) is defined as Eadd � ��N � 1� �
��N�, where ��N� is the chemical potential for the dot
with N electrons, i.e., the energy needed to add the Nth
electron to the system containing already N � 1 elec-
trons. We compute the chemical potential by means of
Slater’s rule [18], in order to minimize numerical errors
due to double differentiation.

Now we focus on realistic dots obtained in an InAs
heterostructure, where the Rashba effect can be quite
large [13].We use for the electron effective mass the value
m � 0:022m0, with m0 being the free-electron mass; and
for the dielectric constant � � 14:6�0, �0 being the one of
vacuum.

In a quantum dot without SO interaction, we expect
peaks in the addition energy when the number of elec-
trons N equals a magic number, i.e., at those integer
values which correspond to a closed-shell configuration.
For a parabolic dot the first magic numbers are 2, 6, and
12; see Eq. (4) and the discussion below it. Besides these
peaks for N coinciding with a magic number, some addi-
tional peaks are expected for a number of electrons
corresponding to a half-filled shell due to Hund’s rule.
In this situation, the electrons in the half-filled shell have
parallel spins to gain exchange energy. For the parabolic
dot under consideration, the first Hund’s-rule peaks are
located atN � 4 andN � 9. Both these kind of peaks can
be seen in Fig. 1(b), for the case when no SO coupling is
present (solid dots). Switching on the SO interaction leads
to a change in the single-electron levels of the dot, and
such a change is reflected in the addition energy. This
effect can be seen in Fig. 1(b), where the addition energy
is plotted for several values of the SO coupling strength,
ranging from a situation where the perturbative treatment
Eq. (5) is still valid, to one where the SO coupling
dominates the single-particle spectrum. Because of the
presence of Kramers-degenerate sublevels in the free-
electron spectrum, peaks tend to be present for an even
206802-2
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FIG. 2. (a) Average values of Sx vs the strength of the in-
plane magnetic field, computed by means of SDFT, for two
closed-shell configurations (N � 2 and N � 6) and for differ-
ent strength of the spin-orbit interaction. Without the Rashba
term, hSxi would be zero. (b) Variation of the ground-state
energy  E � E�B� � E�0� vs the strength of the in-plane
magnetic field, computed by means of SDFT. The ground-state
energy shows a quadratic dependence on the in-plane magnetic
field: E�B� � E�0� � AB2, with A > 0. The susceptibility is
positive and the system is paramagnetic.
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number of electrons in the dot. The fact that a degenerate
level E�0�

M is split in M Kramers-degenerate sublevels (in
the perturbative regime) leads to a suppression of the
Hund’s rule: in a half-filled level to maximize the total
spin the electrons should be allocated one per sublevel,
but this has an energy cost equal to the sublevel splitting;
if the sublevel splitting is larger than the gain in exchange
energy, then the spin polarization for a half-filled level is
suppressed. This is indeed what we see by analyzing the
spin properties of the SDFT ground-state wave function.
At this point, it is important to stress that, due to the
tunability of the SO coupling strength [11–13], it is
possible to investigate experimentally the effect of the
Rashba term on the addition spectrum of few-electrons
quantum dots (addition spectra were measured by
Tarucha et al. [6]) and the transition from weak
(ksol! � 1) to strong SO coupling.

We now investigate the effect of an in-plane magnetic
field. Because of the fact that the system is invariant
under rotation around the z axis, we can choose the
direction of the in-plane magnetic field arbitrarily with-
out losing any generality. We introduce a magnetic field B
along x, which does not affect directly the orbital motion,
but couples to the x component of the total spin, giving
rise to a Zeeman term, Hz � �h!zSx=2, where Sx �P
i�1;N �

�i�
x , and �h!z � �Bg

�B, with �B being Bohr’s
magneton, and g� the g factor. We consider now a dot in
a closed-shell configuration; namely, we take N � 2 and
N � 6. In the case of vanishing SO coupling and in the
independent-electron picture, such a system does not
respond to the in-plane magnetic field for Zeeman split-
ting smaller than the level splitting (!z < !). The situ-
ation changes when the Rashba term is introduced; the
ground state of the dot exhibits now some net-spin polar-
ization. In the upper panel of Fig. 2, the average value of
Sx is plotted vs magnetic field, showing how the system
gets magnetized even in a closed-shell configuration due
to the interplay of SO coupling and Zeeman splitting. The
average values of Sy and Sz remain equal to zero. In the
lower panel of Fig. 2, the variation of the ground-state
energy with magnetic field is plotted vs magnetic field. It
shows a decrease with increasing field (which is well
fitted by a parabola), yielding a positive susceptibility
� � �@2E=@B2. Thus, we can conclude that the dot in
a closed-shell configuration exhibits a paramagnetic be-
havior. This is in contrast to what happens in real atoms,
where a closed shell gives a diamagnetic response due to
orbital degrees of freedom (Larmor diamagnetism) [19],
while in our case the Larmor term is suppressed by the
two-dimensionality of the dot. This paramagnetic
behavior [20] is due to the single-particle eigenstates
(see below), but it persists when the electron-electron
interaction is present (it is enhanced by it), as shown in
Fig. 2.

In the limit of ksol!!=!z � 1 and wz < w, it is pos-
sible to obtain a perturbative expression in Hso for the
single-particle eigenenergies:
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~EEM;i;� �E�0�
M � �

�h!z

2
�
�h!
2

�ksol!�2

�

�
1�

!2

!2 �!2z

�
1� ��2i� 1�

!z

!

�	
; (7)

where i � 1 . . .M� 1, � � 	1 is the quantum number
relative to the projection of spin in the direction of the
magnetic field, i.e., �x, and E�0�

M are the energies given in
Eq. (4). In the independent-electron approximation, the
energy of a closed shell Ecs�M� �

P
i;�
~EEM;i;� reads

Ecs�M� � 2�M� 1�E�0�
M

� �M� 1� �h!�ksol!�
2

�
1�

!2

!2 �!2z

�
: (8)

Expanding Eq. (8) in !z=! we get for the magnetic-field
dependent part of the closed-shell energy ��M� 1� �
�h!�ksol!�2�!z=!�2 �O��!z=!�4�, which explains the
parabolic behavior seen in Fig. 2. From Eq. (8) we get a
paramagnetic contribution to the susceptibility due to a
closed shell
206802-3
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FIG. 3 (color online). Spin density projected along x (a),
y (b), and z (c), computed by means of SDFT, for a dot with
N � 6 electrons, kso � 0:02 nm�1, and �h!z � 1 meV. In (a),
for ease of visualization, we plot �nx instead of nx. Spatial
integration of ny and nz gives zero, yielding a zero average for
the corresponding total-spin components.
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�M
�g��B�

2 � 2�M� 1�!3�ksol!�2
!4 �!4z
�h�!2 �!2z�

4 ; (9)

which in the limit of !z=!� 1 is just a positive con-
stant: �M=�g��B�2 � 2�M� 1��ksol!�

2=� �h!�.
It is interesting to have a closer look at the spin density

for the magnetized dot. In Fig. 3 the projections of the
spin density along the x, y, and z axes are shown for a dot
containing six electrons in the presence both of SO cou-
pling and of a Zeeman field. As is clearly visible, the
system shows spin texture in space; this is due to the fact
206802-4
that no common spin-quantization axis exists anymore (a
similar situation occurs in quantum wires with strong
spin-orbit coupling [21]).

In conclusion, we have studied the effect of Rashba
spin-orbit interaction on the addition energy and on the
spin properties of a few-electron quantum dot by means
of spin-density functional theory. In particular, we have
found a suppression of Hund’s rule, for small kso values,
for which perturbation theory in Hso still holds. An addi-
tional in-plane magnetic field (Zeeman field) leads to a
paramagnetic behavior of the dot in a closed-shell con-
figuration and to spin texture in space.
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