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Quantum Transport in Parallel Magnetic Fields: A Realization
of the Berry-Robnik Symmetry Phenomenon
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We analyze the magnetoconductance of two-dimensional electron and hole gases subject to a parallel
magnetic field. It is shown that, for confining potential wells which are symmetric with respect to
spatial inversion, a temperature-dependent weak localization signal exists even in the presence of a
magnetic field. Deviations from this symmetry lead to magnetoconductance profiles that contain
information on both the geometry of the confining potential and characteristics of the disorder.
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FIG. 1. Schematic picture of the quantum well. Two exem-

are sensitive to the symmetry of the confining potential
under reflection, P z:z! �z. Further, ��T;H� qualita-

plary subband wave functions are shown. The profile of the
impurity potential is sketched on the bottom of the well.
Weak localization (WL) corrections to the conductiv-
ity [1] and magnetoresistance of two-dimensional sys-
tems in perpendicular magnetic fields [2] have been
studied extensively for many years. These phenomena
originate in the constructive interference of time-
reversed electron trajectories. The magnetic field breaks
time-reversal invariance and, therefore, suppresses the
interference. Considerably less attention has been di-
rected to the effect of an in-plane magnetic field on WL
phenomena. Truly two-dimensional systems would not
feel the orbital effect of an in-plane field at all—the
paths within the plane enclose no flux. In real systems,
however, the microscopic profile of the wave functions
in the transverse, or z direction leads to a nonvanishing
magnetic response. Early works on this phenomenon
focused on disordered metallic films [3,4], where size
quantization is absent, and two-dimensional electrons
subject to short-range disorder [5,6]. A recent paper [7]
considers systems with rough interfaces, as, e.g., Si
metal-oxide-semiconductor field-effect transistors are
believed to be [8].

In this Letter we analyze the complementary case
where the motion of the carriers in the z direction is not
completely stochastic. Such scenarios are realized, e.g., in
a gas of electrons or holes on a GaAs=AlGaAs interface.
The mobility in these systems is limited by a long-range
random potential, V�x; y; z�, created by charged impur-
ities located far from the interface. The z dependence of
this potential is probably weak. In the approximation that
neglects this dependence, V � V�x; y�, the in-plane mo-
tion can be separated from the motion in the z direction.
Under these conditions, WL effects acquire nonuniversal
features, depending on the structure of the confining
potential, W�z�. Thus, monitoring WL signals one can
reveal information on the microscopic structure of the
potential well. Specifically, the temperature and in-plane
magnetic field dependencies of the conductivity ��T;H�
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tively depends on the number of occupied carrier sub-
bands, M. The single subband (M � 1) case turns out
to be special and is characterized by quite unusual
magnetoresistance.

Let us first discuss the magnetotransport qualitatively.
An in-plane magnetic field, H, manifests itself through
the phase coherence time, ��H� [3,4]:
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where �� is the WL correction to the conductivity, �
is the elastic scattering time, and �H / H�2. Consider
now the system displayed in Fig. 1. The finite motion
in the z direction implies a splitting of the electronic
spectrum into different subbands of size quantization. If
H � 0 and the disorder is z independent, these subbands
are decoupled and contribute separately to the conduc-
tivity, �. Universality of the WL implies that in this
case the correction, ��, Eq. (1), should be multiplied
by the number of the occupied subbands: �� �
M�e2=�h� ln��=��. Note that, as � / T�p, the conduc-
tivity displays logarithmic temperature dependence.

The magnetic field plays two complementary roles:
it breaks time-reversal (T ) symmetry and (together
with the z dependence of the random potential) couples
different subbands. In fact, the second role determines the
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first one: T invariance is preserved as long as the sub-
bands remain decoupled, since the vector potential of the
parallel field can be gauged out in each particular sub-
band. Therefore, the coupling governs the magnetocon-
ductance. For strong intersubband coupling, we return to
the disordered film situation, i.e., Eq. (1) for the WL
effect. When the coupling is weak, the WL correction is
determined by M different magnetic phase relaxation
times �kH:
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It turns out that 1=�k�0
H > 0, i.e., all WL corrections,

except maybe one (k� 0), are temperature independent
at H � 0 and low enough T. Whether 1=�0

H vanishes or
not depends on the P z symmetry of the confining poten-
tial. A particularly interesting situation arises when the
system is fully P z symmetric: W�z� �W��z�. Then, the
original Hamiltonian is invariant under the combination
of reversal of the magnetic field (H!�H) and P z in-
versions. This symmetry implies orthogonal rather than
unitary level statistics [9]. As a result, 1=�0

H � 0, and
��� ln��=�� at arbitrary H [i.e., the logarithmic ��T�
dependence persists]. All other relaxation times �k�0

H are
proportional to H�2 [10]. Accordingly, the WL correction
reads ��s�H;T� � �e2=�h�	p lnT� 2�M� 1� lnH
. By
contrast, any violation of P z symmetry (by either con-
fining or disorder potentials) suppresses all T-dependent
WL corrections, i.e., ��as�H;T� � 2M�e2=�h� lnH for
M � 1. Therefore, the WL effects sensitively probe the
symmetry properties of the confining (and disorder) po-
tential. All in all, it is the interplay of the three factors —
interband coupling, T invariance, and P z invariance that
determines the conductivity, ��T;H�.

A special situation arises when just one subband is
occupied, M � 1. In the absence of high-lying unoccu-
pied bands, the parallel field has no effect whatsoever — a
one-band system, being structureless in the z direction,
cannot accommodate magnetic flux. Formally, the vector
potential of the field can be removed by a gauge trans-
formation (cf. the analysis below). Thus, T breaking at
M � 1 requires virtual excursions into unoccupied sub-
bands [5]. This fact substantially reduces the magneto-
conductance: If the random potential is z independent, a
TABLE I. Magnetic phase relaxation times, ��k�H . Here d sets the
separation between subbands, D the diffusion constant, � the mean
the Fermi velocity.

M �

P z symmetry 1=�H
No P z symmetry due to

confining potential, W�z� � W��z� 1=�H �D �vF

No P z symmetry due to
disorder, V � V�x; y; z� 1=�H � �vF=�
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residual effect exists, albeit of high order in the magnetic
field, �H;M�1 �H�6. This dependence can be understood
as follows: The matrix elements controlling the interband
hopping are proportional toH. This amounts to a hopping
probability �H2. Since the square of the field is T
invariant, the virtual propagation within the empty bands
must contribute another H and we arrive at �H3 for the
T -breaking contribution to the self-energy. Finally, to
obtain a quantum-mechanical intensity, the propagation
amplitudes have to be squared which brings us to H6. It is
essential that the parallel field performs both T breaking
and subband coupling. Sweeping the Fermi energy
through the bottom of the second subband, a crossover
��H �H�2� $ ��H �H�6� in the WL profile should be
observed. Table I displays a summary of theWL signals to
be expected for a given subband population and symme-
try configuration.

To derive these results we start from the Hamiltonian

H � �
1

2m
�@� iHzey�2 �W�z� � V�x; y� (3)

of an electron subject to a confining potential, W, and
lateral disorder, V. Later on, we will relax the condition
of strict z independence of V. In the following, we con-
sider only orbital coupling to the magnetic field; Zeeman
splitting and spin-orbit scattering will be discussed else-
where. Except for our final results, �h � c � e � 1.

It is convenient to project the Hamiltonian, Eq. (3),
onto a basis of eigenfunctions, k�z�, of the transverse
part of the Hamiltonian 	�@2

z=�2m� �W�z�
 k � �kk:

H kk0 �
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�
�kk0 �

1

2m
�@y � iÂA�2kk0 ;

where the matrix elements

Akk0 � �H
Z
dzk�z�zk0 �z�  �Hdkk0 (4)

measure the degree of P z violation. If the system is P z
symmetric, then Akk � 0. Also notice that the explicit
structure of the matrix ÂA depends on the choice of gauge.

To assess transport properties we need to evaluate
disorder averaged products of Green functions. In par-
ticular, WL corrections are determined by the two-
particle Cooperon propagator. The key elements of this
calculation, safe for the presence of a subband structure,
scale for the width of the quantum well, � is the typical energy
scattering time, �0 the mean transverse scattering time, and vF

1 M > 1

� 0 1=�0
H � 0, 1=�k�0

H �D=����2 �Hd�2

=��4 �Hd�6 1=�kH �D=����2 �Hd�2

�2=�0 �Hd�2 1=�0
H � minfD=����2 �Hd�2; 1=�0g,
1=�k�0

H �D=����2 �Hd�2
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are largely standard [11]. The main result can be
expressed through the Cooperon matrix, �Cq�kk0 :
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whereDk is the diffusion constant of the kth subband, and
�kk0 ��k��k0 . The decoherence rate, 1=�, enters as a
lower cutoff for the q integration. To understand the
meaning of Eq. (6), let us compare it to the familiar
equation for the Cooperon in the absence of a subband
structure, C�1

q �q2��D�H�
�1. If the P z asymmetry of

the confining potential is weak, i.e., Akk is small, then

�C�1
q �kk�q2� k; 1=�kH�!k k; (7)

where  k are the eigenvalues of the matrix �C�1
q�0�kk0 and

!k is a combination of the diffusion constants
fD0; . . . ;DM�1g.

How do the eigenvalues depend on the magnetic field?
For H � 0, all eigenvalues vanish trivially. Switching on
a magnetic field leads to a coupling of the formerly
independent subbands and, thereby, to a set of M� 1
positive eigenvalues  k�0. As a result M� 1 Cooperon
modes cease to contribute to the low temperature WL
signal. However, the lowest eigenvalue,  0, plays a special
role: For a perfectly symmetric potential, it remains zero
implying that a single massless Cooperon mode survives
application of a magnetic field. This is a direct manifes-
tation of the Berry-Robnik phenomenon [9].

For a formal proof note that Akk0 � 0 for even k� k0,
since P z symmetry implies definite and alternating par-
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ity of the eigenstates. As a result the determinant of the
Cooperon matrix, Cq � 0, also vanishes. Indeed, it is
straightforward to verify that �C�1

q�0�X � 0, where X is
a M-component vector X  N 1=2

P
k���k

������
Dk

p
ek and

N � 1=
P
k Dk.

Now let P z be slightly violated, either due to asymme-
try of the confining potential or due to the impurity
potential. In this case the matrix elements Akk0 , k� k0

even, become finite. To first order perturbation theory, the
lowest eigenvalue shifts by � 0�q� � XTC�1

q X. With
Eq. (6) this evaluates to � �as�

0 �H� �N 	
P
k�k0even Xkk0 �

N
P
k;k0 DkDk0 �dkk � dk0k0 �2
H2.

Before considering concrete realizations ofW�z�, let us
explore how an additional weak z-dependent disorder
potential, �V�x; y; z�, affects the Cooperon zero mode.
z-dependent scattering leads to additional coupling be-
tween the subbands. At sufficiently high magnetic fields,
where the field-induced coupling dominates the impurity-
induced coupling, the lowest eigenvalue can again be
evaluated perturbatively:

� �imp�
0 �N "

Z
d3rh�V2�r�i

X
k�k0odd

Z
dz2

k
2
k0 ;

or � �imp�
0 �N =�0, where �0 can be understood as an

intersubband scattering time. At small H, however, the
dominating coupling mechanism is scattering in the z
direction. In this case the lowest eigenvalue  �imp�

0 �H� �
N

P
k;k0 	Xkk0 �NDkDk0 �dkk � dk0k0 �2
H2 corresponds

to the vector Xl �
P
k

������
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p
ek. Thus, 1=�0

H increases as
H2 for small H and saturates at H �Hc � �=vF

����������
�=�0

p
=d

(where � is the typical energy separation between sub-
bands, vF the Fermi velocity, and d the width of the
quantum well) if the confining potential is P z symmetric.

To illustrate our results on a simple and experimentally
relevant example, let us consider a two-subband system,
M � 2. Assuming for simplicity that D0 � D1  D, the
2 � 2 Cooperon takes the form
C�1 �
1

D

 
D�q�A�2 �X01H2 � 1

�
X01H2

X01H2 D�q�A�2 �X01H2 � 1
�

!
;

where A � H�d00 � d11�ey, andX01 obtains from Eq. (6).
FIG. 2. Different regimes of T and H dependences.
At small fields,H � H � �X01���1=2, the magneto-
conductance is insensitive to the P z symmetry and

��H� � ��0�

e2=�2�2 �h�
’ X01�H2 �

2D�e= �h�2d2
01�

1 � ��10�= �h�2
H2; (8)

independent of the dipole elements d00 and d11. [Notice
that ��H� � ��0� vanishes in the limit of infinitely sepa-
rated bands, �10 ! 1, reflecting the behavior of isolated
subbands.]

At large magnetic fields, H � H, and in the fully
symmetric case, diagonalization of the Cooperon matrix
yields 1=�0

�H� � 1=� and 1=�1
�H� � 2X01H2. While

the second term leads to the usual logarithmic field
dependence of �� [cf. Eq. (2)], the field independence
of the first term implies that the conductance continues to
exhibit logarithmic scaling with temperature (through
the T dependence of �) at these large fields. Slight
violation of the symmetry results in a shift of both eigen-
values �	1=��H�
�D�e=�h�2�d00�d11�

2H2. Thus, the
temperature dependence remains as long as H<H�

� �h=
	e�d00�d11�

����������
D�

p

. For larger fields (or stronger asym-

metry) the T dependence saturates and the slope of the
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FIG. 3. Basic diagrams for (a) M > 1, and (b) M � 1. The
wavy lines show interactions with the magnetic field while the
dashed lines represent impurity scattering.
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��lnH� dependence doubles [see discussion after Eq. (2)].
The regimes with different parameter dependences of the
conductance are schematically shown in Fig. 2.

For concreteness, let us list the matrix elements dkk0 for
two common realizations of confining potentials: (i) For a
symmetric box potential of width d, d00 �d11 �0 and
d01 ��16d=�9�2�. Adding a small perturbation �W�z��
wz to the confining potential yields the diagonal term
d00�d11 �4	16d=�9�2�
2w=�10. (ii) For an asym-
metric triangular potential well, W�z��1 for z<0
and W�z��wz for z>0, one obtains d01 �
0:67�2mw��1=3<d00�d11 �1:17�2mw��1=3.

What happens in the case of just one occupied sub-
band? As discussed above, an in-plane magnetic field
does not affect the single Cooperon mode in the
P z-symmetric case. However, for broken P z symmetry,
virtual transitions into empty bands lead to a field and
momentum dependent contribution ��ÂA;p� to the self-
energy of the Green functions of the occupied subband.
The situation is depicted schematically in Fig. 3, where
the relevant contribution to the Cooperon (the two-
particle Green function) is shown for M>1 (left panel)
and M�1 (right panel). In the latter case, sixth order
scattering off the vector potential is needed to generate a
field-dependent contribution. The self-energy can be pre-
sented in the form ��p��Dv�p��pyAv�p�, where
Dv�Av� contains only even (odd) terms in the magnetic
field. In contrast to Dv the second term violates T in-
variance by shifting the vector potential: A00 !A00�
Av�p� [13]. The corresponding magnetic scattering
rate equals

1

�H
�
D0

16

 
v2

F

X
k;k0>0

A0k�Akk0 �A00�kk0 �Ak00
�0k�0k0

!
2

:

z-dependent scattering modifies this result. The mixing of
the subbands by the disorder, �V�r�, brings a finite con-
tribution to 1=�H already at second order in the magnetic
field. Calculation, as performed in Ref. [5], gives

1

�H
�"v2

F

Z
d3rh�V2�r�i

X
k;k0>0

A0kAk00
�k0�k00

Z
dz2

0kk0 :

This leads to a H2 !H6 crossover at the characteristic
field HM�1

c �
�����������
�=D

p
��=�0�1=4=d.

To summarize, we have shown that the magnetoresist-
ance of two-dimensional electron gases in an in-plane
field responds sensitively to both the geometric structure
206601-4
of the confining potential and the nature of the impurity
scattering. Those phenomena are intimately related to the
Berry-Robnik symmetry mechanism [9]. We believe that
the response in the magnetoconductance profile should be
visible in experiment.
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