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The new nonlinear destabilization process is found in the nonlinear phase of the double tearing mode
(DTM). This process causes the abrupt growth of DTM and subsequent collapse after long-time-scale
evolution in the Rutherford-type regime. The nonlinear growth of the DTM is triggered when the
triangular deformation of magnetic islands with sharp current point at the X point exceeds a certain
value. Hence, the mode can be called the structure-driven one. Decreasing the resistivity increases the
sharpness of the triangularity and the spontaneous growth rate in the abrupt-growth phase is almost

independent of the resistivity.

DOI: 10.1103/PhysRevLett.89.205002

The observation of improved confinement of tokamak
plasmas with reversed magnetic shear profile stimulates
the development of the advanced concept of a tokamak
reactor with high plasma performance and steady state
operation, and theoretical investigations are focused to
macroscopic and microscopic behaviors of a tokamak
plasma with a nonmonotonic safety factor profile.
Among several issues, the stability of the resistive double
tearing mode (DTM) is one of the crucial subjects to
be solved for a stable steady state tokamak operation,
because this mode can have large growth rate even in a
low-beta plasma. The problem has been extensively
studied by many authors as the possible candidate of
plasma disruption in fast current ramp-up experiments,
and the nonlinear behavior of DTM has been categorized
to two regimes, i.e., the case with the internal disruption
due to pure DTM and the case with the magnetic island
saturation for DTM with increasing distance between
resonance surfaces [1,2]. Recently, we found a new phe-
nomenon of the DTM in the middle of these two regimes;
that is, in the case that two resonance surfaces are enough
apart from each other, the DTM gently grows magnetic
islands at each resonance surface such as in the
Rutherford regime of the conventional tearing mode
[3,4], but it suddenly changes to rapid growth after both
magnetic islands grow enough to interact with each other
[5]. This phenomenon has been observed in a simulation
with helical symmetry, where all harmonics have the
resonance surfaces at the same radius, so that the newly
observed nonlinear destabilization of DTM is different
from any theories presented so far, such as the nonlinear
coupling among different helicities or the destabilization
through the renormalized turbulence transport process
[6,7]. The purpose of this Letter is to show the new
feature and mechanism of this nonlinear destabilization
process of DTM.

The linear stability and nonlinear behavior of the
double tearing mode are studied by using the reduced
set of resistive MHD equations in a cylindrical geometry
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[8]. In this Letter, ¢ is the poloidal flux function, ¢ is the
stream function, 7 is the resistivity, j is the toroidal
current density, u is the vorticity, and B, is the toroidal
magnetic field. The magnetic and velocity fields are re-
lated to the poloidal flux ¢ and the stream function ¢ by
B = Byé, + Vi X é, and V=V¢ X é,, where é, is
the unit vector in the toroidal direction. In the following,
we consider only the MHD activity with helical symme-
try of f(r, 0, ¢) = flr, { = 68 — (n/m)¢], where m and n
are poloidal and toroidal mode numbers of the MHD
mode, respectively, and we fix (m/n) to 3/1 in this
Letter. These equations are solved by the conventional
scheme of finite difference in the radial direction and
Fourier expansion in the azimuthal direction [8]. In order
to reproduce fine structures, the maximum numbers of
equally spaced radial grids and of the Fourier components
are taken to be 400 and 100, respectively.

In order to study the DTM stability, we employ the
following type of safety factor profile:

ao=a (2P aeol (52

By (r rdr
=/ = 1
i(r) R Jo 70 (D

with fixed parameters of A = 1, ry = 0.412, 6 = 0.273,
rs = 0, and A = 3 throughout this Letter. The value ¢, is
used to change the distance between two resonance sur-
faces, Ar.

The linear stability analysis for the resistive mode
in this g profile shows that, as increasing Ar, the resis-
tivity (n) dependence of the linear growth rate y changes
from the resistive internal mode y « 1'/3 in the limit of
Ar = 0 to the conventional tearing mode y « 1°/5 i

in the
limit of Ar = oo [5,9]. Corresponding to this change of
the linear stability, the nonlinear behavior of the mode
also changes from the exponential growth with the linear
growth rate to the quasilinear saturation of the magnetic
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islands around both resonance surfaces. The new type of
nonlinear instability is found in the parameter range
midway between those two limits. For the parameters
used in this Letter, this range corresponds to 0.22 <
Ar = 0.31. The typical example of the temporal evolu-
tion of magnetic and kinetic energies of the nonlinear
instability for Ar = 0.31 and 5 = 5 X 107° is shown in
Figs. 1(a) and 1(b). After the exponential growth in the
linear regime, the mode reduces its spontaneous growth
rate and enters the slow growth phase of a magnetic island
in the Rutherford-type regime. During this slowly grow-
ing phase, the inner islands are gradually deformed to a
triangular shape, as seen in Fig. 1(c), and are pushed to
the X point of the outer islands. Then, a nonlinear desta-
bilization is suddenly triggered and the magnetic and
kinetic energies abruptly grow. During this phase, the ¢
profile averaged at the radius is flattened in the wide
region, extending to the magnetic axis. This process
may correspond to a plasma collapse or disruption for
low-beta negative shear plasmas.

In order to study the mechanism of this abrupt growth
of the DTM, we have performed several simulations for
another parameter set of Ar = 0.285 and p = 1 X 1077,
where the duration of slow growth process is shorter than
in the case of Fig. 1 due to the decreased Ar and the
increased 7. One of the possible candidates is the quasi-
linear modification of the g profile, which may cause the
acceleration of the linear instability of fundamental and
also higher harmonics. To check this, we performed the
simulation by artificially resetting the perturbations to
the small value for the main harmonics (i.e., m/n = 3/1)
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FIG. 1. Time evolutions of (a) magnetic and (b) kinetic en-
ergies of 3/1 mode with the different harmonics number, .
The contours in (c¢) and (d) show those of the helical flux
function ¢* just before and after the abrupt growth phase. The
curves for /., = 60 and 40 are almost overlapped and difficult
to distinguish from each other.
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and to zero for all other higher harmonics (i.e., =, =
&;=> = 0) on the way of the abrupt-growth phase. The
result shows that the mode returns back to the linear
growth phase and resumes the Rutherford-type evolution,
suggesting that the quasilinear modification of the ¢
profile is not the key factor of the nonlinear destabiliza-
tion. Another possible candidate is nonlinear interaction
between higher harmonics. In Figs. 1, simulation results
for different numbers of /,, are also plotted. The tem-
poral evolution up to the Rutherford-type regime is not
sensitive so much on /,,,, while the behavior of the non-
linear destabilization, or specifically the triggered time,
depends on [.,. An increase of [, accelerates the
growth of the mode, showing that the mode coupling
plays a key role of the nonlinear destabilization. Note
that the nonlinear behavior does not depend on /,,,, larger
than some critical number [, which depends on Ar.
Figure 2 shows the energy spectrum at t = 320 in the
nonlinear destabilization phase for /,,, = 100. The en-
ergy spectra clearly show a two stage structure; that is, the
slope of the spectrum changes around /,, and kinetic and
magnetic energies exhibit a similar tendency in the
higher harmonics regime of [ > [,. This indicates that
the energy cascaded to higher harmonics through mode
coupling does not flow back to the lower harmonics
regime (I < ly), suggesting that the higher harmonic re-
gime (I > [;) works only as the energy sink and does not
play an essential role on the nonlinear behavior of the
mode. Note that [ is close to the critical value [ dis-
cussed above, [y = [_;;. On the other hand, the intermedi-
ate harmonics have close coupling with each other and
are essential for the nonlinear behavior of the mode. It is
noted that the present simulation is based on the helical
symmetry and does not cause any stochastization of
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FIG. 2. Power spectrums of the magnetic and kinetic ener-
gies for /., = 100 at t = 320.
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magnetic field lines. Instead of that, the highly developed
power spectrum enhances the coherent spatial structure
of the mode and leads to the triangular deformation of
magnetic islands, as shown in the flux contour of Fig. 1. In
the case of Fig. 1, the nonlinear destabilization is trig-
gered for [,,, = 7, but not for [,,, = 6. This suggests that
the degree of the island deformation is important for
triggering the nonlinear destabilization.

It is interesting to know whether the magnetic pertur-
bations ¢~ or the kinetic ones ¢~ are the key factor of
the nonlinear destabilization. For this purpose, we reset
magnetic or kinetic perturbations to zero on the way of
the abrupt growth and investigated the subsequent phe-
nomena. Results are shown in Figs. 3. In simulations
resetting the kinetic perturbations to zero, the kinetic
perturbations recovered to the same level as the original
ones in a very short time and shows the abrupt growth
[Fig. 3(a)], while in the case of resetting the magnetic
perturbations to zero, the abrupt growth is not reproduced
[Fig. 3(b)]. For the case retaining fundamental magnetic
perturbation (i.e., ¥;=, = 0), the mode resumes the abrupt
growth after the higher harmonics of magnetic perturba-
tions grow up to sufficient amplitudes through the mode
coupling. This comparison confirms that the nonlinear
destabilization originates from the coupling among mag-
netic perturbations through J X B, not from the driven
reconnection type instability.

The difference of the nonlinear behaviors between the
standard DTM and the nonlinearly destabilized DTM is
clearly shown in Figs. 4, where the contours of the helical
flux, ¢*, the flow potential, ¢, and the toroidal current
excluding the fundamental harmonics, j,~;, in the non-
linear phase are plotted. In the case of standard DTM, the
mode grows exponentially with the linear growth rate
and the convective force pushes the magnetic flux to the
resonance surface faster than the magnetic reconnection
rate. Then, the shape of the reconnection region changes
from the X-point type to the Y type with skin current
flowing along the finite distance, which is known as the
Sweet-Parker type current sheet, as shown in Figs. 4(a)
and 4(b) [10]. On the other hand, in the case of the non-
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FIG. 3. Time evolutions of magnetic and kinetic energies of
3/1 mode for the standard and restarted simulations:
(a) perturbations of ¢(/ > 0) are set to zero, (b) perturbations
of (I > 0) are set to zero.

205002-3

linear destabilization of DTM, quadruple vortices and the
X-point structure of the magnetic flux are sustained in the
abrupt-growth phase, as shown in Fig. 4(c). In this case,
the mode enters the Rutherford-type regime after the
linear growth phase and grows slowly in proportion to
the resistivity, n. During this phase, the convective force
to push the magnetic flux into the outer reconnection
region is weak compared with the magnetic reconnection
rate, and the triangular deformation is highly developed
through the mode coupling. As a result, the toroidal
current concentrates in the small region and forms the
current point, which is a current sheet with very short
length, as shown in Fig. 4(d). Because of the relatively
low kinetic energy, the sharp X-point structure is sus-
tained even during the nonlinear growth phase. Thus, it
is concluded that the formation and sustenance of the
X-point structure is the key factor of the new destabiliza-
tion process. The numerical accuracy of the above process
was confirmed by increasing the radial mesh number N,
up to 1600 and the Fourier mode number [, up to 100.
The half width of the current point is 6r/a =~ 0.008 and
80/2m =~ 0.015 in the typical case shown in Fig. 4, and
the simulation with N, > 400 and [,,, > 40 gives the
same result both in the spatial structure and the time
evolution. When the degree of the triangular deformation
and/or the current concentration exceed some critical
value, DTM enters a nonlinear destabilization phase.
The critical value is not so clear, but we see the evidence
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FIG. 4. Contours of the helical flux function, ¢*, solid curves
in (a) and (c); the flow potential, ¢, dotted curves in (a) and (c);
and the toroidal current, j,~(, solid curves in (b) and (d):
(a) contours of " and ¢ at r = 130 for the standard DTM
(Ar = 0.115), (b) contours of j~, at t = 130 for the standard
DTM (Ar = 0.115), (c) contours of * and ¢ at t = 330 for
the nonlinearly destabilized DTM (Ar = 0.285), (d) con-
tours of j~¢ at t= 330 for the nonlinearly destabilized
DTM (Ar = 0.285).
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from the simulation that the critical value is related to the
critical harmonics number (Fig. 1) and also to the dis-
tance between two rational surfaces. From these features,
the phenomenon is referred as ‘“‘structure-driven non-
linear destabilization.”” A remarkable feature of this
structure-driven mode is the dependence of the sponta-
neous growth rate, yemp, On the resistivity, n; that is, the
dependence of Y., On 7 in the explosive growth phase is
very weak, Yemp ~ 1%, @ =0, as shown in Fig. 5. The
features of the current point formation and the weak
dependence of the growth rate on the resistivity are
similar to the Petschek-type reconnection model. The
structure-driven destabilization, however, is caused by
the interaction of two island chains of the weakly coupled
DTM, and the process is explosive with accelerated spon-
taneous growth rate and is terminated by expelling the
magnetic islands. Hence, it does not fit to any model of
the steady state driven reconnection such as the Petschek-
type one.

We note that the linear stability of this mode follows
the tearing mode scaling at the initial equilibrium.
Hence, the mode experiences three time scales in its
time evolution; y o« 7%/ in the linearly unstable phase,
v « 7 in the Rutherford-type nonlinear glowing phase,
and y * % a=0 in the nonlinearly destabilized
phase. In the recent large tokamak plasmas, the resistiv-
ity, , becomes about 1 =~ 1078, The result suggests that
the nonlinear destabilization of DTM could be triggered
in the fast time scale, after long term evolution of DTM in
the Rutherford-type regime.

In summary, we have shown the new process of the
nonlinear destabilization of DTM caused in the reversed
shear profile in a tokamak. It was found that the slowly
growing DTM can be nonlinearly destabilized and
changes to the explosively growing DTM. The explosive
growth of DTM was shown to be originated not from
both any type of the quasilinear destabilization and the
turbulence driven instability, where the increase of the
transport coefficients driven by the higher harmonics
accelerates the growth of the mode. As discussed in this
Letter, the slow growth such as in the Rutherford regime
and the sufficient interaction of the inner and outer islands
are necessary for the nonlinear destabilization of DTM.
We think that the key physics of the explosive growth is
the formation of the sharp triangularity in the magnetic
structure and the resultant intense current point, which
enhances the magnetic reconnection. These are special
features of this nonlinear process. This is the reason we
call it the structure-driven one.

In the case of the low B disruption in a negative shear
plasma, perturbations growing with a resistive time scale
are sometimes observed around each rational surfaces
[11]. After the growth in the resistive time scale, the
perturbation shows the explosive growth. These features
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FIG. 5. Time evolutions of the magnetic energies of 3/1
harmonics at the nonlinear destabilization phase of DTM for
the different resistivity.

are roughly consistent with our observation of the non-
linear destabilized DTM, although, at the present stage,
the relationship between the precursor with the resistive
time scale and the fast time scale phenomenon is not clear
in experiments and the shear flow evolution seems to have
the effect on the mode stability, which is not included in
the present simulation.
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