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Rotational Feshbach Resonances in Ultracold Molecular Collisions
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In collisions at ultralow temperatures, molecules will possess Feshbach resonances, foreign to
ultracold atoms, whose virtual excited states consist of rotations of the molecules. We estimate the
mean spacing and mean widths of these resonant states, exploiting the fact the molecular collisions at
low energy display chaotic motion. As examples, we consider the experimentally relevant molecules O2,
OH, and PbO. Especially for polar species, the density of s-wave resonant states is quite high, implying
potentially disastrous consequences for trapped molecules.
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of two- and three-body inelastic collisions, which can
lead to unacceptably large heating and/or trap loss,

lowered, and, in fact, are useful in quantifying the onset
of chaos in this regime [18].
Scattering resonances are of great importance in ultra-
cold collisions. Feshbach resonances occur when the en-
ergy of a pair of free atoms (or molecules) is nearly
degenerate with that of a quasibound state of the pair.
The quasibound state is characterized by the promotion of
one or both atoms to an excited internal state, for ex-
ample, an excited hyperfine state [1]. External magnetic
fields can then shift these states in or out of resonance,
giving the experimenter direct control over interparticle
interactions [2]. In this way, Bose-Einstein condensates of
85Rb have been made stable or unstable on command,
leading to novel many-body effects [3]. It is, moreover,
predicted that this kind of control will be useful in
preparing degenerate Fermi gases in ‘‘resonant super-
fluid’’ states with any desired interaction strength [4,5].
Magnetic field Feshbach resonances have now been ob-
served in the alkali atoms 23Na [6], 85Rb [7,8], 133Cs [9],
and 40K [10]. While not uncommon, these resonances are
far from ubiquitous in ultracold alkali atoms. This is
largely due to the relatively small number of atomic
hyperfine states available to form resonances.

Ultracold molecules, by contrast, offer a far greater
number of resonances than alkali atoms, because rota-
tional excitations can also contribute to resonant states
[11]. In contrast to the two hyperfine states in an alkali
atom, a molecule can possess a large number of energeti-
cally available rotational states. Considering that ‘‘typi-
cal’’ rotational energy splittings are of order 1–10 K,
while the well depths of intermolecular potential energy
surfaces (PESs) can be hundreds or thousands of K, it is
clear that tens of rotational states may contribute, includ-
ing their degeneracies arising from magnetic quantum
numbers.

Identifying the number and properties of these reso-
nances is important for understanding the behavior of a
molecular gas reduced to extremely low temperatures. Of
greatest immediate importance is the fact that a reso-
nance near threshold can greatly enhance the occurrence
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thereby undermining the stability of the trapped sample
[6,9,12]. In planning an experiment, it is therefore im-
portant to know whether it will even be possible to avoid
these resonances, or whether they inevitably lie close
enough to threshold to have an influence on the gas’
stability. For heavy polar molecules, it is likely that the
latter will occur, as we will see below.

In addition, careful mapping of the resonances in cold
collision experiments will provide invaluable information
for constraining potential energy surfaces to accurately
reproduce threshold scattering phase shifts. In turn, this
will enable theory to assess the effect of magnetic and
electric fields on the resonances, just as is the case in
ultracold atom physics. This could lead to resonant field
control of molecular collisions, perhaps even of chemical
reactions [13], in the ultracold environment. Moreover, a
high density of near-threshold resonances will influence
elastic scattering and, thus, the mean-field energy in
ultracold clouds.

In this Letter, we estimate the most basic properties
of molecule-molecule rotational Feshbach resonances,
namely, how many we can expect, and what their widths
might be. We are interested here in molecules produced in
their rovibrational ground states by buffer-gas cooling
[14] or Stark slowing [15] techniques. However, vibra-
tionally excited cold molecules produced by photoasso-
ciation of cold atoms will also exhibit rich resonant
dynamics [16].

Classical chaos at low energies has been studied exten-
sively in molecular scattering problems [17]. Of greatest
relevance to our present purposes are multiple-collision
events: It is possible that a collision deposits sufficient
energy in internal molecular degrees of freedom (e.g.,
rotations and vibrations) that there is not enough transla-
tional energy left to allow the molecules to separate. The
molecules may therefore collide many times before fi-
nally shedding enough energy to separate. Multiple colli-
sions are increasingly likely as the collision energy is
 2002 The American Physical Society 203202-1
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Our classical calculations verify that multiple-collision
resonances persist at ultracold temperatures. We consider
scattering of 17O2 molecules, using the singlet rigid rotor
potential energy surface of Ref. [19]. To simplify the
calculation, we constrain all the coordinates to fixed
values except the intermolecular distance R and the ori-
entations of the molecules in the scattering plane, as
shown in the inset of Fig. 1. The main part of the figure
shows a slice through a sample phase space trajectory for
collision energy 1 mK. The axes are R and the angular
momentum P�1 (in units of �h) of one of the molecules. As
a guide, the heavy solid line indicates the allowed region
of phase space. The trajectory eventually fills the allowed
phase space, by scrambling the available energy in rota-
tional degrees of freedom.

Chaotic motion in the classical realm leaves its signa-
ture in the quantum-mechanical spectrum as well. We
have computed the quantum-mechanical elastic scatter-
ing cross section for the jN � 0; J � 1;MJ � 1i fine-
structure state of 17O2 [Fig. 2(a)], following the model
described in Ref. [20]. This model includes rotational
levels up to N � 2, and the partial waves L �
0; 2; . . . ; 14, where L is defined as the orbital angular
momentum of the two molecules about their common
center of mass. Treating the resulting 33 resonances as
bound states of the �O2�2 collision complex, we expect to
find evidence of quantum chaos in statistical measures of
the energy level distributions. A glance at the spectrum in
Fig. 2(a) suggests that there is no clustering of levels, but
rather that they are roughly evenly spaced. This ‘‘rigid-
ity’’ of level spacings is characteristic of the quantum-
mechanical spectrum of a system that displays classical
chaos, and is usually quantified in terms of the spectral
rigidity function ��x� introduced by Dyson and Mehta
[21]. If the number of states with energy less than or equal
to E is denoted N�E�, then ��x� represents the root-mean-
squared deviation of N�E� from a straight line over an
energy range x, where x is measured in units of the mean
level spacing. Figure 2(b) shows this function, computed
using the resonances from Fig. 2(a). A spectrum consist-
ing of uncorrelated energy levels would yield a rigidity
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FIG. 1. A single classical trajectory for O2-O2 scattering at a
collision energy 1 mK. See text for details.
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��x� � x=15, as shown with the dashed line. A spectrum
generated in the Gaussian orthogonal ensemble (GOE)
approximation, representing a chaotic system, yields in-
stead the solid line. The ��x� computed from the spec-
trum in Fig. 2(a) more closely resembles the GOE result,
suggesting that this system is chaotic. A similar analysis
has been applied to the eigenphase shifts in reactive
scattering processes [22].

Given that the classical trajectories can fill phase space
(Fig. 1), each energetically allowed state is equally likely
to be populated during a resonant collision. This obser-
vation has been exploited in the theory of unimolecular
chemical reactions [23]. We use the same idea here to
estimate the total number of resonant states available in a
given energy range. To this end, we separate the molecule-
molecule Hamiltonian into three independent terms:

ĤH � ĤH1 � ĤH2 � ĤH int; (1)

where ĤH1 and ĤH2 represent the rotational fine structure of
each individual molecule, and ĤH int is an effective inter-
molecular potential that depends only on R. Each
Hamiltonian is represented by a set of independent en-
ergy eigenvalues E1, E2, and Eint. During a resonant
collision, any partition of the total energy E �
E1 � E2 � Eint is equally likely, provided that angular
momentum is conserved. Estimating the number of states
N�E� at or below energy E is then a simple counting
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FIG. 2. Evidence of chaos in quantum mechanical scattering
of oxygen molecules. (a) shows the complete elastic scattering
cross section, computed as in Ref. [20]. In (b) the Dyson
rigidity function (points) is computed for the energy spacings
of the 33 resonances in (a). Our results are much more closely
related to the results of a Gaussian orthogonal ensemble (GOE)
approximation to a chaotic system than to a nonchaotic regular
system.
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TABLE I. Number of resonances in a 1 K energy interval above threshold for cold collisions
of 17O2 molecules in their J � MJ � �1 state, neglecting nuclear spin. These results are
determined from a quantum mechanical calculation. Various levels of completeness of this
calculation are specified by the maximum value of rotational quantum number Nmax and
maximum partial wave Lmax. For each such calculation, the table gives the number of
resonances found separately in each incident partial wave L.

Nmax Lmax L � 0 L � 2 L � 4 L � 6 L � 8 L � 10

2 2 1 4 	 	 	 	 	 	 	 	 	 	 	 	

2 4 2 7 8 	 	 	 	 	 	 	 	 	

2 6 2 7 9 8 	 	 	 	 	 	

2 8 2 10 14 9 10 	 	 	

2 10 3 10 14 11 11 6
4 4 3 11 15 	 	 	 	 	 	 	 	 	
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exercise. The density of states, ��E� � dN=dE, is also
easily computed.

To illustrate that this is a reasonable estimate of the
density of states, we compare the results to those of a fully
quantum-mechanical calculation for 17O2-

17O2 scattering
[20]. Table I tabulates, for the quantum-mechanical cal-
culation, the number of resonances in each partial wave L
in an energy range 1 K above the incident threshold. Each
row in the table represents a separate calculation, char-
acterized by the maximum number of molecular rotation
states (Nmax) and partial wave states (Lmax) included in
the basis set.

Table II reports the same information, but this time
estimated from the statistical model. Fluctuations in the
density of states function ��E� in the relevant energy
range correspond to uncertainties of �50% in the num-
bers given. Within this uncertainty, the agreement with
the quantum-mechanical calculation in Table I is quite
good, giving us further confidence that the statistical
estimate is reasonable for this purpose.

A clear advantage of the statistical model over the full
quantum-mechanical calculation is that it can easily be
calculated including all allowed values of N and L con-
sistent with conservation of energy and angular momen-
tum. The result is given by the final row in Table II, for
small values of the incident partial wave. Considering all
partial waves yields a total number of resonances in this
TABLE II. Number of resonances for 17O2 cold
resonances are estimated using the statistical cou
the final row gives the result for Nmax � 8 a
energetically allowed states of the �17O2�2 dime

Nmax Lmax L � 0 L � 2 L

2 2 2 5
2 4 3 8
2 6 3 10
2 8 3 10
2 10 3 10
4 4 5 15

All All 14 45
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1 K interval of order �103. However, in ultracold colli-
sions, we are limited to low values of L, typically L � 0
alone, barring occasional shape resonances with higher
values of L. We therefore conclude from Table II that the
mean density of s-wave rotational resonances in O2 is on
the order of 10 K�1. For comparison, alkali atoms typi-
cally exhibit on the order of one s-wave Feshbach reso-
nance per 1 K energy interval. Thus, rotational Feshbach
resonances are slightly more numerous than atomic hy-
perfine Feshbach resonances, but not strikingly so, at least
for nonpolar molecules.

This simple statistical theory can also estimate the
widths of these resonances. Again borrowing from the
theory of unimolecular dissociation, the resonance width
may be approximated in the Rice-Ramsperger-Kassel-
Marcus (RRKM) approximation [23]. Here the energy
width is approximately ��� � W�E��=2� ���, where W�E��
denotes the number of states that permit the molecules to
actually escape to infinite separation. For sufficiently low
collision energies, we must have W�E�� � 1, i.e., both
molecules must return o their rotational ground states to
be energetically able to separate.

We can check this estimate using the set of quantum-
mechanical resonances from Fig. 2(a). The 33 resonances
that appear in this 1 K energy interval imply a mean
width of 5 mK. The actual widths span several orders of
magnitude, from 70 �K up to 40 mK, but their geometric
collisions, as in Table I. Here, however, the
nting model described in the text. In addition,
nd Lmax � 36, thus including all possible

r.

� 4 L � 6 L � 8 L � 10

	 	 	 	 	 	 	 	 	 	 	 	

11 	 	 	 	 	 	 	 	 	

15 11 	 	 	 	 	 	

16 14 9 	 	 	

16 16 12 9
24 	 	 	 	 	 	 	 	 	

78 83 85 84
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mean is 2.4 mK, comparable to the RRKM result. As
noted above, in a complete calculation that could include
all rotational states up to Nmax � 8 and Lmax � 36, we
would find ��� 
 103 K�1, dropping the mean width down
to ��� 
 10�4 K for realistic O2 cold collisions. The
RRKM approximation is, unfortunately, unable to predict
the variation of the widths in this case.

The situation is dramatically different for polar mole-
cules, whose long-range dipole-dipole interaction po-
tential, proportional to 1=R3, holds many more
intermolecular bound states near threshold. To illustrate
this point, we consider two examples: OH, which is
suitable for Stark slowing [15]; and the a�1� state of
PbO, which is a leading candidate in which to measure
the electric dipole moment of the electron [24,25]. Both
molecules possess, in addition to a dipole moment, a
pair of closely spaced states of opposite parity: a �
doublet of splitting � � 0:081 K in OH [26], and an �
doubling of splitting � � 260 �K in PbO [27].
Intermolecular potential curves correlating to these
thresholds will hold a large number of dipole-bound
resonant states.

For the OH-OH interaction, an approximate PES exists
[28]. We include the long-range part of this interaction,
which has a minimum at R 
 6 a:u: that arises from
hydrogen bonding forces. We approximate this surface
with a single curve by fixing the two OH molecules in
their linear geometry. For PbO-PbO, the PES is entirely
unknown; however, since the bound states near threshold
depend primarily on the long-range potential, we esti-
mate the PbO-PbO PES by multiplying that of OH-OH by
the appropriate ratio of squared dipole moments,
�dPbO=dOH�

2 
 7:7. Then, using the same statistical
model, we estimate the density of states in a 2� energy
interval near threshold, 240 K�1 for OH and 2 105 K�1

for PbO, significantly larger than for the nonpolar O2.
The result for the heavier species PbO is particularly

striking: We expect to find an s-wave resonance, on
average, every 5 �K in collision energy. In such a gas,
Feshbach resonances are the rule rather than the excep-
tion, with many resonances accessible within the kinetic
energy spread of the trapped molecules. Apart from in-
creased opportunities for resonant trap loss, such a gas
will have new properties arising from extremely strongly
energy-dependent scattering lengths. For example, the
influence of resonant scattering on the mean-field energy
of a Bose-Einstein condensate of these molecules may
have to be reconsidered, perhaps using semiclassical
methods that are applicable in the realm of dense resonant
spectra [29,30].
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[9] V. Vuletić, A. J. Kerman, C. Chin, and S. Chu, Phys. Rev.

Lett. 82, 1406 (1999).
[10] T. Loftus et al., Phys. Rev. Lett. 88, 173201 (2002).
[11] R. C. Forrey, N. Balakrishnan, V. Kharchenko, and

A. Dalgarno, Phys. Rev. A 58, R2645 (1998).
[12] J. L. Roberts, N. R. Claussen, S. L. Cornish, and C. E.

Wieman, Phys. Rev. Lett. 85, 728 (2000).
[13] That chemical reactions may occur at ultralow tempera-

tures is suggested by N. Balakrishnan and A. Dalgarno,
Chem. Phys. Lett. 341, 652 (2001).

[14] J. D. Weinstein et al., Nature (London) 395, 148 (1998).
[15] H. L. Bethlem et al., Phys. Rev. A 65, 053416 (2002).
[16] R. C. Forrey et al., Phys. Rev. Lett. 82, 2657 (1999).
[17] K. M. Atkins and J. M. Hutson, J. Chem. Phys. 103, 9218

(1995), and references therein.
[18] T. Pattard and J. M. Rost, Chem. Phys. Lett. 291, 360

(1998).
[19] P. E. S. Wormer and A. van der Avoird, J. Chem. Phys. 81,

1929 (1984).
[20] A.V. Avdeenkov and J. L. Bohn, Phys. Rev. A 64, 052703

(2001).
[21] F. J. Dyson and M. L. Mehta, J. Math. Phys. (N.Y.) 4, 701

(1963).
[22] P. Honvault and J.-M. Launay, Chem. Phys. Lett. 329, 233

(2000).
[23] R. G. Gilbert and S. C. Smith, Theory of Unimolecular

and Recombination Reactions (Blackwell Scientific,
Oxford, 1990).

[24] D. DeMille et al., Phys. Rev. A 61, 052507 (2000).
[25] D. Egorov et al., Phys. Rev. A 63, 030501 (2001).
[26] J. A. Coxon, Can. J. Phys. 58, 933 (1980).
[27] F. Martin et al., Spectrochim. Acta, Pt. A 44, 889 (1988).
[28] B. Kuhn et al., J. Chem. Phys. 111, 2565 (1999).
[29] M. L. Du and J. B. Delos, Phys. Rev. A 38, 1896 (1988);

38, 1913 (1998).
[30] B. E. Granger and C. H. Greene, Phys. Rev. A 62, 012511

(2000).
203202-4


