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Inclusive transverse momentum distributions of charged hadrons within 0.2 < p; < 6.0 GeV/c have
been measured over a broad range of centrality for Au + Au collisions at ,/syy = 130 GeV. Hadron
yields are suppressed at high p; in central collisions relative to peripheral collisions and to a nucleon-
nucleon reference scaled for collision geometry. Peripheral collisions are not suppressed relative to the
nucleon-nucleon reference. The suppression varies continuously at intermediate centralities. The results
indicate significant nuclear medium effects on high-p; hadron production in heavy-ion collisions at

high energy.

DOI: 10.1103/PhysRevLett.89.202301

QCD predicts a phase transition at high energy density
from hadronic matter to a deconfined quark-gluon plasma
[1]. This transition may be studied in the laboratory
through the collision of heavy ions at ultrarelativistic
energies. Partons propagating in a medium lose energy
through gluon bremsstrahlung [2—4], with the magnitude
of the energy loss predicted to depend strongly on the
gluon density of the medium. Measurement of partonic
energy loss therefore provides a unique probe of the
density of the medium.

Analysis of deep inelastic scattering and Drell-Yan
pair production using nuclear targets indicates that the
energy loss in cold nuclear matter is 0.2-0.5 GeV/fm
for quarks with energy greater than 10 GeV [5,6].
Hard scattering of partons in nuclear collisions occurs
early in the evolution of the extended system, thereby
probing the phase of highest density. Energy loss softens
the fragmentation of jets, leading to the suppression
of high transverse momentum (high p7) hadrons in
the final state [7]. The PHENIX Collaboration has
reported the suppression of charged hadron and 7° pro-
duction at high pr in central Au + Au collisions at
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center-of-mass energy per nucleon pair |/syy =
130 GeV, relative both to reference data from nucleon-
nucleon (NN) collisions and to peripheral Au + Au colli-
sions [8]. The suppression is in qualitative agreement with
predictions of partonic energy loss in dense matter,
though quantitative conclusions require the understand-
ing of other nuclear effects [8].

This Letter presents a measurement of the inclusive
charged hadron yield (h* + h7)/2 within 0.2 < p; <
6.0 GeV/c, measured for a broad range of centrality in
Au + Au collisions at /syy = 130 GeV by the STAR
Collaboration at the Relativistic Heavy Ion Collider
(RHIC). Suppression of charged hadron production at
high pr in central collisions is observed, in qualitative
agreement with the PHENIX measurement [8]. The high
precision and wide kinematic and centrality coverage of
the data presented here permit a detailed study of nuclear
medium effects on hadron production from the soft to the
hard scattering regime.

For comparison of spectra from nuclear collisions to an
NN reference, the nuclear modification factor is defined
as
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Raalpr) = eY)
where Ty = (Npin)/o NN accounts for the collision
geometry, averaged over the event centrality class.
(Npin)» the equivalent number of binary NN collisions,
is calculated using a Glauber model. R44(py) is less than
unity at low py [9]. In contrast, the yield for hard pro-
cesses scales as (Vy;,) in the absence of nuclear medium
effects [Ry4(pr) = 1], and effects of the medium may be
measured at high py by the deviation of Ry4(py) from
unity. In addition to final state energy loss, R 4(p7) may
be affected by initial state multiple scattering [7,10] and
transverse flow, both of which will enhance hadron pro-
duction at high pr, and by the shadowing of nuclear
parton distributions. At significantly lower /s than the
present study, enhancement of hadron production at high
pr has been observed in p-nucleus [11] and a-a [12]
collisions, as well as central collisions of heavy nuclei
[13]. Current estimates of shadowing effects at RHIC
energies contain large uncertainties [7,14].

The STAR detector is described in [15]. Data collection
utilized both a minimum bias trigger and a trigger select-
ing the 10% most central events. Charged particle tracks
were detected in the Time Projection Chamber (TPC),
with momentum determined from their curvature in a
0.25 T magnetic field. After event selection cuts, the
central data set contained 320000 events, while the
minimum bias data set contained 240000 events.
The measured minimum bias distribution, corrected for
vertex finding efficiency at low multiplicity, corresponds
to 94 = 2% of the Au+ Au geometric cross section
ohany, assumed to be 7.2 b [16].

Centrality selection is based on the primary charged
particle multiplicity N, within the pseudorapidity range
Inl <0.5. The most central bin is 0%-5% of ogim:,
while the most peripheral bin is 60%—80%. Alternative
centrality measures incorporate forward neutral energy
[9,17] and its correlation with multiplicity at midrapidity.
The maximum variation of the p; spectrum for different
centrality measures is 4% for central events and less than
4% for more peripheral events. This variation is included
in the systematic uncertainties of the reported spectra.

The analysis of inclusive charged particle spectra for
pr <2 GeV/c has been described previously [9]. Ac-
cepted tracks for p; > 2 GeV/c have |9| <0.5 and a

distance of closest approach to the primary vertex less
than 1 cm to reject background. Acceptance, efficiency,
and momentum resolution were determined by embed-
ding simulated tracks into real raw data events. For
pr > 1.5GeV/c, the Gaussian distribution of track
curvature k o« 1/p; has a relative width of &k/k =
0.016(p;/(GeV/c)) + 0.012 for central events and
Sk/k = 0.011(p;/(GeV/c)) + 0.013  for  peripheral
events. Correction was made for distortion due to finite
momentum resolution.

The hadron yield decreases rapidly with increasing
pr and its measurement is sensitive to small spatial dis-
tortions, which generate charge sign-dependent system-
atic errors in the measured track curvature. Measurement
of the summed hadron yield, (h* + h7)/2, is markedly
less sensitive to such distortions than the yield of one
charge sign alone. Each half of the cylindrical TPC is
divided azimuthally into 12 sectors. High-p; tracks have
small sagitta (s ~ 0.8 cm at p; = 5 GeV/c) and are con-
fined to a single sector. The sectorwise distribution of
(h* +h7)/2 has a pp-dependent rms variation of
less than 5%, though with correlated variations for adja-
cent sectors. These effects contribute to the systematic
uncertainty.

The most significant background corrections are due to
weak particle decays and antinucleon annihilation in
detector material. The former are estimated based on A,
A, and K? yields measured for p; < 2.5 GeV/c [18,19],
with extrapolation to higher pr using an exponential
fit [18]. The latter are based on measured antiproton
yields [20].

The major correction factors and their uncertainties
are given in Table L “Tracking” incorporates efficiency,
acceptance, and the effects of the spatial nonuniformity
of the TPC, with the latter dominating its systematic
uncertainty. The total systematic uncertainty of the spec-
tra is the quadrature sum of the uncertainties in Table L
For the highest p; bins it is = 27% for central events and
=~ 21% for peripheral events.

Figure 1 shows the inclusive p; distributions of (A% +
h™)/2 within |n| < 0.5 for various centrality bins, for
Au + Au collisions at /syy = 130 GeV. Error bars,
which are dominated by systematic uncertainties at all
pr, are generally smaller than the symbols. The
spectra were fit by the pQCD-inspired power law function
(21]

TABLE I.  Typical multiplicative correction factors and systematic uncertainties, applied to
the yields for peripheral and central collisions.
pr=2GeV/c pr =5.5GeV/c
Centrality 60%—-80% 0%—5% 60%—-80% 0%—5%
Tracking 1.16 = 0.08 1.59 = 0.16 1.14 £ 0.23 1.49 = 0.30
Background 0.95 = 0.03 0.90 = 0.05 0.95 = 0.05 0.88 = 0.12
pr resolution 1.0055 0.99 = 0.01 0.92 = 0.05 0.76 = 0.10
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FIG. 1. Inclusive p; distributions of (h* + h~)/2. Non-
central bins are scaled down by the indicated factors. The
combined statistical and systematic errors are shown. Curves
are fits to Eq. (2). Hash marks at the top indicate bin boundaries
for pr > 1.5 GeV/c.

1 dN
—=C( + pr/po)", 2)
2mprdpr

which describes pr spectra of charged hadrons for NN
collisions over a wide range of /s [21-23]. Systematic
changes in shape of the spectra with centrality are re-
vealed by the fit parameters C, n, and mean transverse
momentum {py) = 2p,/(n — 3) in Table IL Also shown
in the Table are fit parameters for p + p collisions at
/s = 200 GeV [21]. Equation (2) yields a poor fit relative
to the uncertainties of the data for the most central bin,

TABLE IL

with systematic deviations from the fit function of 10%—
20%, whereas for more peripheral collisions it fits well,
with parameters tending smoothly to those for p + p
collisions.

A more direct comparison of yields for different cen-
tralities relies on estimating (Ny;,) and the mean number
of participants (Np,) for each centrality bin. For this
purpose, the distribution do/dNy;, (and equivalently,
do/ dNp,r) was calculated using a Monte Carlo Glauber
model [17] with o =41+ 1 mb and Woods-Saxon
nuclear matter density, using radius r = 6.5 = 0.1 fm
and surface diffuseness a = 0.535 £ 0.027 fm [16]. Per-
centile intervals of do/dNy;, (calculated) and do/dNy,
(measured) were equated to extract (N;,) for each cen-
trality bin. The Glauber model parameters and geometric
cross section were varied to estimate the systematic un-
certainties. Results are given in Table IL

Because charged particle distributions at midrapidity
are used for centrality selection, biases in the relation
between do/dNy;, and do/dNg, due to fluctuations and
autocorrelations were assessed. Variation of parameters in
a Monte Carlo calculation of multiplicity fluctuations for
fixed collision geometry and comparison of the measured
multiplicity distribution in an azimuthal quadrant cen-
tered on a high-py particle against those in the other
quadrants both yielded negligible uncertainties in (Ny;,)
and (Npyr)-

Table II shows the charged particle yield per partici-
pant pair, ﬁdggh, obtained by integrating the p; spec-
tra. The extrapolated yield in p; < 0.2 GeV/c is ~20% of
the total for all centralities. The dependence of <N2 [>dg;/h
on (Npay) is consistent with observations in [17]. ™

Figure 2 shows the ratio of the central (0% —5%) spec-
trum to that of the two peripheral bins (40%—60%, 60% —
80%), normalized by (Ny;,). The dashed lines at unity and
below show scaling with (Ny;,) and (N,,), respectively,
and the shaded regions show the systematic uncertainties
from Table II. The vertical error bars on the data points

Geometric quantities, charged particle density per participant pair, and fit parameters to Eq. (2), for various centrality

bins and for p + p at 200 GeV [21], assuming o'} = 41 mb. The fits to the Au + Au data use uncorrelated measurement errors,

inel

which are largely systematic and non-Gaussian. Parameter errors shown also include correlated systematic uncertainties, which are

added to parameter errors resulting from the fit.

Power law fit (0.2 < p; < 6.0 GeV/c)

Centrality Noin)  (Npar) o s C(GeV/e)?)  (pr)(GeV/o) n
0%—5% 96587 350+% 563 = 39 3.22+0.23 797 = 60 0.520 = 0.010 21.9+0.5
5%-10% 764723 2967 452 + 32 3.05+0.23 654 + 50 0.517 = 0.010 20.7 0.4
10%-20% 551448 2329 344 + 24 2.96 = 0.24 520 + 40 0.511 = 0.010 18.9 0.4
20%-30% 348742 165+10 234+ 16 2.83 = 0.26 372 =28 0.504 = 0.011 173 0.3
30%-40% 210438 115419 144 + 10 2.51 +0.30 252+ 19 0.497 = 0.011 172 0.3
40%-60% 903 6217, 722 +5.1 2.35+£0.42 141 = 11 0.480 = 0.011 14.8 £ 0.2
60%—80% 2047 2042 2.0+ 1.5 2.13 = 0.61 504 0.446 = 0.011 13.0 £ 0.2
P + p(200) 1 2 2.65 +0.08 2.65 + 0.08 7.7+ 0.4 0.392 = 0.003 11.8 04
202301-4 202301-4
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FIG. 2. Ratio of charged hadron yields within |n| < 0.5 for
central over peripheral collisions, normalized to (Ny;,).

are the uncertainties of the central data, while the hori-
zontal caps are the quadrature sum of the uncertainties
of both data sets. Approximate participant scaling at low
pr is seen. The ratio rises monotonically below py ~
2 GeV/c and decreases at high p;. The ratio of central
over most peripheral achieves a value at p; = 5.5 GeV/c
of 0.27 = 0.12 with additional uncertainty *0.12 due to
(Npin), establishing significant suppression of charged
hadron production at high p; in central collisions.
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FIG. 3. Ry,(py) for various centrality bins, for Au+ Au

relative to an NN reference spectrum. Error bars are described
in the text. Errors between different p; and centrality bins are
highly correlated.
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Figure 3 shows R,4(py) for various centrality bins
relative to an NN reference spectrum, parametrized
by Eq. (2) with CollN =2677¢ mb/(GeV/c)?, po =
1.90755 GeV/c, and n = 1298707 (the superscripts
and subscripts are curves that bound the systematic un-
certainty). The reference was determined by fitting Eq. (2)
to UA1 p + p data at /s = 200-900 GeV [21] and ex-
trapolating to /s = 130 GeV. Extrapolation of the UA1
200 GeV spectrum to 130 GeV using pQCD calculations
agrees to within 5% with the reference at p; = 6 GeV/c
[24,25]. Correction to the NN reference for the UAl
acceptance (|n| < 2.5), which differs from this analysis
(Im] < 0.5), was based on two independent pQCD calcu-
lations [24,26], giving a multiplicative correction of
1.17 = 0.06 at p; = 2.0 GeV/c and 1.35 = 0.10 at p; =
5.5 GeV/c. The pp-dependent systematic uncertainty of
the NN reference is the quadrature sum of the power law
parameter and the acceptance correction uncertainties.
Isospin effects are negligible for p;y <6 GeV/c [25].
The error bars are the systematic uncertainties of the
measured spectra, while the caps show their quadrature
sum with the systematic uncertainty of the NN reference.

R44(pr) increases monotonically for pr <2 GeV/c at
all centralities and saturates near unity for p; >
2 GeV/c in the most peripheral bins. In contrast,
Ryus(pr) for the central bins reaches a maximum and
then decreases strongly above pr = 2 GeV/c, showing
suppression of the charged hadron yield relative to the
NN reference of 0.36 = 0.16(syst) at p; = 5.5 GeV/c for
the 0% —5% bin, with additional uncertainty =0.03 due to
(Npin)- Raa(pr) varies continuously as a function of cen-
trality, and no centrality threshold for the onset of sup-
pression is observed [27].

In summary, charged hadron production in high en-
ergy collisions of heavy nuclei has been studied over a
wide range of p; and event centrality. At high py, hadron
yields scale with the number of binary collisions for
peripheral collisions, while significant suppression of ha-
dron production is seen for central collisions. This phe-
nomenon indicates substantial energy loss of the final
state partons or their hadronic fragments in the medium
generated by high energy nuclear collisions, though quan-
titative measurement of this effect requires additional
reference data.
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