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Bright Soliton Trains of Trapped Bose-Einstein Condensates
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We variationally determine the dynamics of bright soliton trains composed of harmonically trapped
Bose-Einstein condensates with attractive interatomic interactions. In particular, we obtain the
interaction potential between two solitons. We also discuss the formation of soliton trains due to the
quantum mechanical phase fluctuations of a one-dimensional condensate.
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equations of motion for the center-of-mass position and
the relative distances between the solitons. As expected,

�
2
T2Bj �x; t�j4 ; (3)
Introduction.—The existence of solitonic solutions is a
very general feature of nonlinear wave equations. In the
case of an atomic Bose-Einstein condensate, the macro-
scopic wave function of the condensate obeys the so-
called Gross-Pitaevskii equation, whose nonlinearity is
a result of the interatomic interactions. Depending on the
repulsive or attractive nature of the interatomic interac-
tions, the Gross-Pitaevskii equation allows for either dark
or bright solitons, respectively. The properties of dark
solitons have been extensively studied theoretically [1–8].
They have also been created experimentally in elongated
Bose-Einstein condensates [9–11]. Much less is known of
bright solitons [12], which have only very recently been
created in two experiments with Bose-Einstein conden-
sates of 7Li atoms [13,14].

In the experiment of Strecker et al., soliton trains
consisting of up to ten solitons have been observed [14].
Moreover, it was found that, even though the interatomic
interactions are attractive, the neighboring solitons repel
each other with a force that is dependent on their separa-
tion. Here we confirm that the source of this repulsive
force is a phase difference of � between two neighboring
solitons [15]. Physically, this can be understood from the
fact that the antisymmetric nature of the many-soliton
wave function prevents the solitons from penetrating each
other. Although the phase difference explains the repul-
sive interactions between the solitons, it presents us with
the problem of understanding why the experiment always
seems to create soliton trains in which the neighboring
solitons have a � phase difference. We also address this
interesting question here.

To understand the dynamics of the solitons, we use a
variational approach, in which we describe the wave
function of the individual solitons as a Gaussian and
then make an appropriate linear superposition of these
Gaussians to represent the soliton train. Both the width
and position of a Gaussian can be varied. However, since
we are dealing with solitons, which by definition do not
show any dispersion, only the position is allowed to
depend on time. Using this trial wave function, we derive
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the center-of-mass motion decouples completely from the
relative motion. The dynamics of the soliton separations
compare favorably with the experimentally observed
behavior.

Single soliton dynamics.—We first study the equilib-
rium properties and dynamics of a single soliton. As in
the experiments, we consider bright solitons formed from
a condensate that is confined by a very elongated axially
symmetric harmonic potential, for which the ratio of
the radial and the axial trapping frequencies obey
!r=!z � 1. We are, therefore, mostly interested in the
motion of the soliton in the axial direction and can
represent the wave function of a single soliton by a trial
function of the form

 �x; t� � Asol�z� 
�t�; r� exp
�
i
m
�h
d
�t�
dt

z
�
; (1)

where 
�t� represents the soliton’s center of mass, andm is
the atomic mass. For the amplitude of the soliton, we take
the Gaussian

Asol�x� �

�������������������
N

�3=2qzq
2
r

s
exp

�
�
z2

2q2z
�

r2

2q2r

�
; (2)

where qz and qr are two variational parameters that
determine the width of the soliton in the axial and radial
directions, respectively. The total number of atoms in the
condensate is denoted by N. Note that this Gaussian
ansatz is particularly well-suited when the axial width
of the soliton is comparable to the axial harmonic oscil-
lator length ‘z �

���������������
�h=m!z

p
. In the case that qz � ‘z, it

would be better to replace the exponential exp��z2=2q2z�
by

����
�

p
=�2 cosh�z=qz�	 [13,15]. However, we see later that

the Gaussian ansatz gives physically reasonable results in
this case also. Note that we take qz and qr as time
independent, since we do not want to consider the pos-
sible breathing motion of the solitons here [16].

The equilibrium widths of the soliton can be calculated
by minimizing the Gross-Pitaevskii energy functional
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with respect to qz and qr [17]. The external potential
obeys Vext�x� � m�!2

zz
2 �!2

rr
2�=2 and the interatomic

interaction strength T2B � 4�a �h2=m is proportional to
the negative s-wave scattering length a. Assuming that qr
has been found in the above manner, the physics becomes
effectively one dimensional. The one-dimensional energy
for  �z; t� 


R
dr2�r �x; t� is again given by Eq. (3) but

now we must use T2B � 4�� �h2=m with � � a=2�q2r
[18]. It should be kept in mind, however, that the one-
dimensional theory can be applied only for a soliton
containing less thanNmax � O�‘r=jaj� atoms, where ‘r ����������������
�h=m!r

p
is the radial harmonic oscillator length. Above

this number of atoms the soliton will collapse [19–21].
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Using this effective one-dimensional picture, the
equation of motion for 
�t� is finally derived by
substituting the Gaussian ansatz  �z; t� into the action
S� 
;  	 �

R
dt�

R
dzi 
@ =@t� E� 
;  	�. The result-

ing equation d2
�t�=dt2 � �!2
z
�t� shows that the

center of mass of the soliton oscillates sinusoidially
with the trap frequency. This is, of course, an exact
result that follows from the Kohn theorem [22].

Two soliton dynamics.—Our trial wave functions for
two solitons with a phase difference of 0 or � are,
respectively, the symmetric and antisymmetric combina-
tions of the two Gaussian wave functions of a single
soliton. In detail, we use
 ��z; t� �
1������������
N��t�

p �
Asol�z� z1�t�� exp
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i
m
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dz1�t�
dt
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�
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�
i
m
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: (4)

Here z1�t� and z2�t� denote the positions of the two soli-

tons and 
�t� � �z1�t� � z2�t��=2 is their center of mass.
For simplicity we consider here only the case of a phase
difference of 0 or � between the solitons. In addition, we
take the number of atoms in each soliton, and therefore
also their widths, equal to each other. The generalization
to an arbitrary phase and an arbitrary number of atoms is
straightforward but somewhat tedious. Fortunately, the
above assumptions turn out to be reasonable when we
compare our results with experiments, and it allows us
to bring out the dynamics of the relative separation most
clearly. Finally, for the rest of this section, we scale
length to ‘z �

���������������
�h=m!z

p
, time to 1=!z, and energy to
�h!z. The normalization constant N��t� is then given by

N��t� � 2
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4
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2
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where ��t� � z1�t� � z2�t� is the distance between the two
solitons. Note that N is still the total number of atoms in
the condensate, so a single soliton contains only N=2
atoms.

Using this trial wave function, the Lagrangian per
atom takes the form
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where the effective potential V��	 is given by
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and _�� � d�=dt. It is clear from this Lagrangian that the
center-of-mass motion and the relative motion are com-
pletely decoupled. Furthermore, the equation of motion
for the center of mass is simply d2
�t�=dt2 � �
�t�,
which corresponds again to the Kohn mode that oscillates
at the frequency of the trap. On the other hand, the
equation of motion for the relative motion is rather com-
plex due to the coupling between the two solitons that is
determined by the velocity-dependent potential V��	.

In Fig. 1, we compare the exact numerical solution of
the relative motion with experimental data. The parame-
ters of the experiment and the theory are the same as
those of Ref. [14], and we take the antisymmetric combi-
nation of Gaussians. Very good agreement is obtained
with both the experimentally observed amplitude of
oscillation of the relative coordinate and its frequency,
which is approximately 2!z. In particular, we see that the
two solitons never cross each other. This result, and the
nonsinusoidal nature of��t�, are both due to the hard-core
nature of the interaction when the solitons start to
overlap.

To show this, we neglect the velocity dependence of
V��	, assume that qz � 1, and take the limit of large
distances between the two solitons, i.e., �� qz. With
these approximations, we obtain

V��	 �
2

�������
2�

p
N�

qz
�

�
4
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2�

p
N�

qz
�
�2

2q4z

�
exp

�
�
�2

4q2z

�
:

(8)

The second term in the right-hand side represents the
interaction energy V��� between the two solitons. For the
antisymmetric choice of the two-soliton wave function,
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FIG. 1. The relative motion of two solitons. There are
5000 atoms in each soliton and a � �3a0, with a0 the Bohr
radius. The solid curve is the solution of the exact equation of
motion for ��t�. The dashed curve is the solution of Eq. (9) with
V��� � ��2=2q4z� exp���

2=4q2z�. The points are experimental
data obtained using the same apparatus described in Ref. [14].
In the experiment more than two solitons were created. We
focused on two large and adjacent ones.
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this potential energy is positive, which implies that the
two solitons will indeed repel each other.

In this approximation, the equation of motion of ��t�
takes the form of Newton’s equation

d2��t�

dt2
� ���t� �

dV���t��
d�

: (9)

Thus, the problem reduces to that of a particle moving in
the potential �2=2� V���, which has two minima lo-
cated symmetrically around � � 0. Depending on the
initial conditions, the two solitons can be trapped in these
minima. In other words, the separation between them
oscillates and the solitons never cross each other, as
verified by the exact solution. To investigate the impor-
tance of the interatomic interactions, we show in Fig. 1
with the dashed curve the solution to Eq. (9) when the
potential contains only the contribution from the kinetic
energy of the atoms. A solution of Eq. (9) with the full
potential V��� from Eq. (8) is almost identical to the
exact solution. The smaller amplitude of oscillation in
the relative motion is, therefore, a clear signature of the
reduction of the repulsive force between the solitons due
to the interatomic interactions. We have also analytically
calculated the interaction energy for two solitons with an
amplitude proportional to

����
�

p
=�2 cosh�z=qz�	 and solved

the corresponding equation of motion. It leads to only
minor corrections that are due to the fact that the poten-
tial V��� is now somewhat more repulsive and only falls
off as �4�=q3z� exp���=qz� for large separations.

Soliton train formation.—In the experiment of Strecker
et al. [14], soliton trains are formed by making use of a
so-called Feshbach resonance [23]. In summary, the pro-
cedure consists of first making a stable condensate with a
relatively large positive scattering length and then switch-
ing to a small negative value. An important clue for
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understanding the mechanism for the creation of the
soliton train is the observation that all the solitons repel
each other and, thus, have a phase difference equal to �.
This suggests that, by changing the sign of the scattering
length, the phase modes of the condensate become un-
stable. Roughly speaking, the most important wavelength
of the unstable phase modes must then be comparable to
the separation between solitons in the train.

To make this physical idea quantitative, we consider a
homogeneous condensate with a density n � N=L, where
L is the (Thomas-Fermi) length of the condensate.
Denoting the phase of the condensate wave function
 �z; t� by ��z; t�, it is easy to show from the action
S� 
;  	 that �k�t� 


R
dze�ikz��z; t� corresponds to a

(complex) harmonic oscillator for every wave vector
k > 0. Physically, this implies that the quantum mechan-
ics of every phase mode is analogous to the quantum
mechanics of a fictitious particle in a two-dimensional
harmonic oscillator potential. The mass of this fictitious
particle is mk � 4"kn=!2

kL, and the frequency of the har-

monic oscillator potential is !k �
�����������������������������
"2k � 2nT2B"k

q
= �h,

with "k � �h2k2=2m. Initially, the scattering length is
positive and all these frequencies are positive.
Assuming that the condensate has come to equilibrium,
the quantum fluctuations of �k�t� are then fully deter-
mined at zero temperature by the ground-state wave
function �1=�‘2k� exp��j�kj2=2‘2k�, with ‘k �

������������������
�h=mk!k

p
.

In particular, we have that h��z; t�i � 0.
However, if at t � 0 we suddenly change the scattering

length to a negative value, the modes with k < kmax �������������������
16�j�jn

p
become unstable because the spring constant

mk!
2
k of these harmonic oscillators becomes negative and

equal to �mk�
2
k. Solving the quantum mechanics of a

particle in an inverted harmonic oscillator potential, we
can then show that, for t� 1=�k,

hj�k�t�j
2i ’

�h
4mk!k

�
1�

!2
k

�2
k

�
e2�kt: (10)

As in the case of a spontaneously broken symmetry, the
latter result can physically be understood by saying that
quantum mechanical fluctuations imprint the condensate
wave function with the phase

h��z; t�i ’
Z kmax

0

dk
2�

cos�kz�

����������������������������������
�h!kL
4"kn

�
1�

!2
k

�2
k

�s
e�kt: (11)

Having obtained this result, we are now able to simu-
late the experiments. We first determine the ground-state
wave function of a condensate with a positive scattering
length for the experimental parameters of interest. We
then imprint this wave function with the phase given in
Eq. (11) and let the resulting wave function evolve under
the appropriate Gross-Pitaevskii equation with a negative
scattering length. We note here that, due to numerical
limitations, we have used an initial number of 104 atoms
which is an order of magnitude less than that in the
200404-3



−5 −3 −1 1 3 5

z/lz

−1500

−500

500

1500

|ψ
(z

)|2 l z

0
 −π
−2π
−3π
−4π

χ(z)+3(z/lz ) 2/2

FIG. 2. Soliton train formation. The solid curve is the density
and the dashed curve is the phase of the condensate. Initially,
we start with an equilibrium condensate profile for 104 atoms
with a scattering length of 200a0. The scattering length is then
instantaneously changed to a � �3a0. The trap parameters are
obtained from Strecker et al. [14].
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experiment. In this case, we find that after an evolution
time of t ’ 1:8=!z, seven solitons are formed, together
with phonon excitations. The solitons are clearly visible
as plateaus in the phase, after subtraction of the parabolic
behavior of the phase due to the overall shrinking of the
condensate. The phase difference between two adjacent
solitons is indeed approximately equal to �. Some devia-
tions from � are expected because the solitons are mov-
ing relative to each other. These results are shown in
Fig. 2, where we plot both the density and the phase of
the condensate wave function. Note that our calculation
includes no relaxation processes due to the presence of a
thermal cloud [24]. Including these stabilizes the soliton
train by damping the phonon excitations and the soliton
motion.

Conclusions.—In this Letter, we have considered the
formation and dynamics of bright soliton trains in a
trapped Bose-Einstein condensate with attractive inter-
actions. In particular, we have shown that two solitons
with a phase difference of � repel each other. The result-
ing dynamics compares favorably with experiment. In the
experiment, always more than two solitons were created,
while here we have focused on only two. In principle, a
generalization to more than two solitons is straightfor-
ward. In this case, we just sum in the Lagrangian of
Eq. (6) over all the positions zi�t� of the bright solitons.

We have also shown that soliton trains can be dy-
namically generated by quantum mechanical phase
fluctuations of the condensate, due to the modulational
instability [25] that exists in a Bose-Einstein condensate
with attractive interactions. This mechanism gives an
intuitive explanation why adjacent solitons have a� phase
difference. It also predicts that the number of solitons that
is formed after a rapid, i.e., fast compared to 1=!z, sign
change in the scattering length is equal to the ratio of the
initial condensate size and the wavelength of the most
200404-4
unstable phase mode. However, this prediction does not
take dissipation into account. Because solitons are not
topological objects, dissipation can lead to a considerably
different number of solitons as it drives the gas to equi-
librium. In the experiment, the number of solitons in the
train is about half of the dissipationless prediction [14].
This observation suggests that dissipation processes are
indeed present. A detailed comparison with experiment
thus requires knowledge of the properties of the thermal
cloud, which are not well known experimentally. It was
also observed that the number of solitons in the train is,
over a large range, independent of the exponential time
constant with which the scattering length is changed.
This is as expected as long as dissipation plays an im-
portant role and the sign change in the scattering length
remains nonadiabatic.
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