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Direct Measurement of the Wigner Function of a One-Photon Fock State in a Cavity
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2Collège de France, 11 place Marcelin Berthelot, F-75231 Paris Cedex 05, France
(Received 11 April 2002; published 28 October 2002)
200402-1
We have measured the complete Wigner function W of the vacuum and of a single-photon state for a
field stored in a high-Q cavity. This experiment implements the direct Lutterbach and Davidovich
method [L. G. Lutterbach and L. Davidovich, Phys. Rev. Lett. 78, 2547 (1997)] and is based on the
dispersive interaction of a single circular Rydberg atom with the cavity field. The nonclassical nature of
the single-photon field is exhibited by a region of negative W values. Extensions to other nonclassical
cavity field states are discussed.

DOI: 10.1103/PhysRevLett.89.200402 PACS numbers: 03.65.–w, 42.50.Ar, 42.50.Dv
a given point � in phase space. Without determining Tr�����P� � hPi � n��1�n�n;n���.
The statistical properties of a single mode light field
(or of a one-dimensional atomic motion) are described by
the Wigner function W [1], which is a quasiprobability
distribution in phase space. Whereas, classically, this
quantity is always strictly positive, W may take negative
values for a quantum state. The existence of negative
quasiprobabilities is generally considered as a signature
of nonclassical states. Coherent fields, thermal fields, and
even squeezed states have completely positive Wigner
functions and can thus, in this respect, be considered as
‘‘classical. ’’ Fock states with a defined nonzero photon or
phonon number and superpositions of coherent states with
different phases or amplitudes (‘‘Schrödinger cat’’ states
[2–4]) exhibit negative values of W and are, according to
this criterium,‘‘nonclassical.’’

Several reconstruction methods have been proposed
and experimentally demonstrated to obtain W. A proce-
dure similar to medical tomography amounts to integrat-
ing W along many directions in phase space. The Radon
inversion [5] is then used to extract W. This method has
been used for various field states [6,7], leading recently to
a measurement of W for a single-photon running field
[7,8]. The Radon inversion has also been applied to the
atomic motion in an interferometer, leading to the obser-
vation of a negative W value [9].

Other methods, which directly yield the Wigner func-
tion, based on the measurement of the photon number
distribution after a displacement of the field state in phase
space, have also been proposed [10] and realized for
‘‘classical’’ states [11]. The photon [12] or phonon [13]
number distribution, and, hence, W, can also be obtained
indirectly, by analyzing the quantum Rabi oscillation of a
two-level atom coupled to the displaced oscillator. This
method has been applied to a trapped ion single-phonon
state [13]. In practice, both these methods require trunca-
tion of the photon (phonon) number distribution at some
finite number.

An elegant method proposed by Lutterbach and
Davidovich (LD procedure) [14,15] yields directly W at
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explicitly (or truncating) the photon number distribution,
it directly measures the photon number parity of the field
displaced by ��. This measurement is performed by
atomic interferometry, in a situation where an atomic
state superposition coupled to the field is phase shifted
by � each time the number of photons increases by one.
We have already used this method to measure the negative
value of W for a one-photon state at the origin of phase
space [16]. This experiment was, however, unable to de-
termine W at other points, because the photon-induced
phase shift, produced in a resonant Rabi oscillation [17],
applied only to the zero- or one-photon subspace.

In this Letter, we report the complete determination of
W for a cavity field, using the LD procedure. The �-phase
shift per photon is realized by a nonresonant atom-field
interaction [18]. We have applied the method to a small
thermal field, with a Gaussian-shaped positive Wigner
distribution, and to an approximate one-photon Fock
state, giving a ‘‘Mexican hat’’-shaped distribution, with
a well-marked negative feature at the origin.

The LD method is based on a simple expression of
W���, at point � in phase space, for a field with density
matrix � [19]:

W��� � 2Tr�D�����D���P�; (1)

where P � exp�i�aya� is the field parity operator
[its action on Fock state jni being Pjni � ��1�njni]
and D��� � exp��ay � �
a� is the displacement
operator. With this normalization, �2 � W � 2
and

R
W���d2� � �. For an n-photon Fock state,

W�0� � 2��1�n.
W is twice the expectation value of P in the field state

displaced by an amplitude ��, whose density matrix is
���� � D�����D���. If the initial field is stored in a
cavity C, we merely have to ‘‘shift’’ it by injecting in C a
coherent field with amplitude ��, then to measure the
parity operator on the resulting field. Repeating this ex-
periment many times for each � value, we get W���=2 �P
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FIG. 1. (a) Scheme of the experimental apparatus. The rubid-
ium atomic beam effuses from oven O. Circular atoms are
prepared one at a time in box B. They cross the cavity C before
being counted in the field-ionization detector D. The source S
is used for the cavity field displacement. The source S0 is used
for the Ramsey interferometer. (b) Experimental timing for the
one-photon Wigner function measurement. The time origin
corresponds to the atom crossing the cavity axis (central
vertical dotted line). The two other dotted lines indicate the
cavity mode waist limits. The lower curve presents, versus
time, the detuning 	 between the atomic transition and mode
Ma. The horizontal dotted line corresponds to the atom-Ma
resonance condition. The resonant period between t � �74 �s
and t � �27 �s corresponds to the �-Rabi pulse preparing a
single photon in Ma. The narrow feature around 95 �s is the
field pulse used to tune the phase � of the Ramsey interfer-
ometer. The two upper curves present the ‘‘on’’ periods for
sources S and S0.
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In order to measure hPi, we send repeatedly across C a
single atom with a known velocity. This atom has two
levels, e and g, the e ! g transition being slightly off
resonant with the field (frequency mismatch 	). In an
n-photon field, the atomic transition frequency is light
shifted at cavity center by 
2n=2	 [18], where 
 is the
resonant vacuum Rabi frequency [20]. We adjust 	 so that
a single-photon produces a �-phase shift on an e=g
coherence during the atom-cavity interaction time.

This phase shift is revealed by Ramsey interferometry
[21]. We subject the atom to two resonant �=2 pulses
mixing e and g before and after the interaction with C.
The probability pe (respectively, pg) for detecting the
atom in e (respectively, g) exhibits modulations versus
the phase � of the interferometer. For an empty cavity
and a proper choice of phase reference, pe�
�1�cos��=2. The phase shift induced by an n-photon
field being n�, pe becomes, in the presence of a dis-
placed field, pe��;��� �1�

P
n��1�n�n;n���cos��=2�

�1�hPicos��=2. Hence, W is directly related to the
fringes contrast c���:

W�2hPi�2c����2�pe�0;���pe��;���: (2)

W��� is thus determined from the expectation value of a
measurement performed on the atom, after its interaction
with the displaced field, without inversion procedure.

The realization of the LD method is challenging. We
need to generate a large dispersive phase shift per photon.
We must also perform the measurement in a time short
compared to the field damping time —the time scale for
the washing out of nonclassical features for fields with
photon number of the order of unity. We have performed
the experiment with our cavity QED setup, described in
detail elsewhere [22], which provides the tools required to
realize these difficult conditions.

A sketch of the setup is shown in Fig. 1(a). Its central
part is a superconducting cavity C made of two niobium
mirrors in a Fabry-Perot configuration, cooled down to
1.3 K. It sustains two Gaussian field modes Ma and Mb
(waist w � 6 mm) separated by a frequency interval
� � 128 kHz around 51.1 GHz. The field damping times
are Ta � 800 �s for the upper frequency mode Ma and
Tb � 730 �s for Mb. The two modes initially contain a
thermal field with about one photon. This field is erased,
before the experimental sequence starts, by sending
through the cavity a train of absorbing atoms [22]. This
reduces the background photon number in both modes.
The residual photon number in mode Ma is about 0.1.

Let us describe now the sequence of operations re-
quired to measure W for a one-photon Fock state stored
in Ma. This field is produced by a velocity-selected cir-
cular Rydberg atom (velocity v � 150 m=s). The atom is
prepared in the circular level with principal quantum
number 51 (level e) and undergoes in Ma a �-Rabi pulse
on the transition from e to the circular state with principal
quantum number 50 (level g) [23]. The single-photon
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Rabi frequency is 
=2� � 49 kHz [24]. To adjust the
Rabi pulse duration, a time varying electric field is ap-
plied across the cavity mirrors. It switches by Stark effect
the atomic transition, initially out of resonance, into
resonance with Ma for the required time interval, then
out of resonance again. The corresponding timing is
depicted on Fig. 1(b) (lower trace). The final e ! g tran-
sition frequency is set to be 	=2� � 105 kHz above the
frequency of Ma. The atomic transition being from then
on nonresonant with Ma and Mb, the atom-cavity inter-
action becomes dispersive. It is used to measure, with the
same atom, the Wigner function of the field in C.

The field displacement is achieved by injecting in Ma,
in a pulsed process, a coherent field generated by the
source S. The injected amplitude is calibrated, with a
�3% precision, in an auxiliary experiment, by measuring
the Ramsey fringes phase shift, proportional to the aver-
age photon number for large detunings 	 [18]. The
injection occurs immediately after the one-photon prepa-
ration. Since there is no phase information in the cavity
field preparation, we deal only with phase-independent
Wigner functions. The phase of the injected amplitude,
200402-2
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FIG. 2. Determination of the ‘‘vacuum state’’ Wigner func-
tion. (a) Ramsey fringes for an injected amplitude � � 0.
Probability pe for detecting the atom in state e as a function
of the Ramsey interferometer phase �=�. Dots are experimen-
tal with error bars reflecting the variance of the binomial
detection statistics. The solid curve is a sine fit. (b) and (c)
Ramsey fringes for � � 0:57 and � � 1:25, respectively.
(d) Dots: vacuum state Wigner function versus � with error
bars reflecting the uncertainty on the Ramsey fringes fit. The
solid line is a theoretical fit (see text). (e) Corresponding photon
number distribution pn.
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well controlled in our setup [22], is thus not varied here.
We assume it, without loss of generality, to be zero.

We start, simultaneously with the displacement, the
Ramsey interferometer operation. Two pulses generated
by the source S0 in a low-Q transverse mode, resonant on
the e ! g transition (whose frequency is detuned from
Ma and Mb), are applied on the atom [Fig. 1(b)], the
second being fired after the atom has exited C. The
atom-cavity detuning and the timing of the first pulse
are adjusted to achieve the required �-phase shift per
photon. The duration of each experimental sequence is
shorter than the cavity mode damping time.

The duration of the Ramsey pulses (7:8 �s) is so short
that Fourier components would coincide, if no precau-
tions were taken, with the frequencies of Ma and Mb,
leading to a field leakage in these modes. In order to avoid
it, we adjust the square shape Ramsey pulses central
frequencies and durations so that their sine-cardinal
Fourier transform has zeros at the frequencies of Ma
and Mb. We have checked by an independent experiment
that the Ramsey pulses do not feed more than 0.03 photon
on the average in Ma.

The final atomic state is detected by the state-selective
field-ionization detector D. The phase � of the Ramsey
interferometer is swept by applying, before the second
Ramsey pulse (when the atom is already out of the mode),
a short pulse of electric field of variable amplitude [see
Fig. 1(b)]. Ramsey fringes are recorded by accumulating
data on many runs of the experiment. For comparison, a
similar experiment is carried out without the atomic
emission in C, with a slightly different timing. The
Stark field, realizing the photon generating Rabi pulse,
is not applied in this case.

We start by discussing the results when no photon is
injected in C, realizing an approximation of the vacuum
field, modified by the presence of a small thermal field.
Figures 2(a)–2(c) show the Ramsey fringes obtained for
three increasing values (top to bottom) of �. The experi-
mental fringes are fitted with sine curves [solid lines in
Figs. 2(a)–2(c)] providing the contrast c��� (with a pre-
cision �0:02). The phase invariance versus � indicates
that the shift per photon is close to � (a precise fit of the
data yields 3:3� 0:15 rad). Note that the imprecision on
this shift affects only quadratically c��� ( � 5% errors for
coherent fields containing up to four photons).

Figure 2(d) presents the experimental W values. The
measurements are affected by the finite contrast of the
Ramsey interferometer due to various imperfections,
among which the phase shift induced by the residual
thermal field in Mb (about 0.4 photon on average). Since
the atom-Mb detuning is 	� � � 2	, a photon in Mb
produces a �=2 phase shift, reducing c���. We thus multi-
ply the raw data by a normalization factor 2.44, so that
the integral of the W values over the phase space is equal
to �, as required. This procedure assumes that the con-
trast reduction is independent of �, a reasonable assump-
tion for the low photon numbers involved here. The
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Wigner function is a Gaussianlike curve whose variation
when � increases reflects the decrease of c���. The solid
line in Fig. 2(d) is a fit on the Wigner function of a mix-
ture of the zero-, one-, and two-photon states. The adjust-
able parameters are the photon number probabilities pn of
the initial cavity field, before displacement. The agree-
ment between the fit and the experiment is very good. The
corresponding photon number distribution is shown in
Fig. 2(e). It is in good agreement with a thermal field
(average photon number n � 0:2), consistent with the
return to thermal equilibrium during the duration of the
experiment.

We now turn to the study of the ‘‘one-photon’’ Wigner
function. Figures 3(a) and 3(b) show the Ramsey fringes
for � � 0 and � � 0:81, respectively. Contrary to the
‘‘vacuum’’ field case, we see that the phase of the fringes
is shifted by � between these two values. This phase
reversal indicates a change of the sign of W from negative
(small �) to positive (large �). TheWigner function W���
is shown in Fig. 3(c). The normalization factor is now
4.16. The reduction of the contrast, compared to the
vacuum case, is mainly due to the imperfections of the
�-Rabi pulse preparing the one-photon state in C. A
200402-3
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FIG. 3. Determination of the ‘‘one-photon’’ Wigner function.
(a) Ramsey fringes for an injected amplitude � � 0.
(b) Ramsey fringes for � � 0:81 (c) Dots: experimental
Wigner function. The solid line is a theoretical fit.
(d) Inferred photon number distribution.
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fraction (16%) of the atoms stay in e. Since they experi-
ence the Ramsey pulses, they contribute to out of phase
signals which reduce the observed contrast. The measured
Wigner function exhibits a strongly nonclassical feature
around � � 0. The solid line is a fit on a mixture of Fock
states with adjustable photon number probabilities. The
photon distribution pn before injection, inferred from the
fit, is shown in Fig. 3(d). It exhibits a 71% probability for
the one-photon state. This value is again explained by
field relaxation during the experiment.

We have realized a complete measurement of the
Wigner function in phase space for an approximation of
a zero- and one-photon field using the LD method. This
opens interesting perspectives for the study of nonclassi-
cal fields. An immediate extension is the determination of
W for a superposition of zero- and one-photon states. The
atom is initially prepared, by a classical microwave pulse,
in a superposition of e and g. A �-Rabi pulse copies this
superposition onto the cavity state [23]. The same atom is
then used to determine W. A two-photon Fock state
Wigner function could also be measured easily. An extra
source atom is then used to prepare a first photon in the
cavity before the above-described sequence starts. The
study of the Wigner function of a decaying ‘‘Schrödinger
cat’’ state [4] is also within reach. The long interaction
times required to prepare the ‘‘cat’’ state and to probe the
Wigner function make it necessary to use different atoms
for the field preparation and detection. This puts more
200402-4
severe limitations on the cavity damping time. The cor-
responding conditions will be met with a slightly im-
proved cavity.
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