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Quantum Computation with Untunable Couplings
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Most quantum computer realizations require the ability to apply local fields and tune the couplings
between qubits, in order to realize single bit and two bit gates which are necessary for universal
quantum computation. We present a scheme to remove the necessity of switching the couplings between
qubits for two bit gates, which are more costly in many cases. Our strategy is to compute with encoded
qubits in and out of carefully designed interaction free subspaces analogous to decoherence free
subspaces. We give two examples to show how universal quantum computation is realized in our scheme
with local manipulations to physical qubits only, for both diagonal and off diagonal interactions.
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like those used in NMR, which requires high precisions algebraic properties with DFS, we are using them for a
Quantum computation is generally formulated in terms
of a collection of qubits subject to a sequence of single
and two bit operations [1]. This implies that the effective
local fields applied to individual qubits, and the couplings
between the qubits, are variable functions subject to ex-
ternal control. In many cases, two bit operations, whose
implementation depends on certain interactions between
qubits, are more difficult than single bit gates. They can
require more sophisticated manipulations, and therefore
may take a longer time and cause stronger decoherence.
This usually results from the requirement to vary (in the
simplest case just switch on and off) the couplings be-
tween qubits, which is not always possible or easy to
realize. One such example is quantum computing with
Josephson junction devices, both charge and flux type [2–
6]. In this case, the coupling between qubits is most
naturally realized with a hard wired capacitor or induc-
tor, whose value is fixed by the fabrication and cannot be
tuned during the computation. The superconducting
quantum computing community has been working hard
to devise variable coupling schemes [5,7–9], but it is
generally agreed that none of these proposed switches is
completely satisfactory [9]. Most of them [5,7] require
external controls, and thus are likely to be major decoher-
ence sources. Others were designed to avoid such external
controls, but may suffer other problems, for instance, the
number of qubits that can be incorporated into the system
can be limited [8,9], which is at odds with the supposed
scalability of a solid state quantum computer.

An always on and untunable coupling causes certain
problems for quantum computation, depending on the
particular form of the interaction. If the interaction
Hamiltonian is diagonal in the computational basis,
each qubit state will gain additional phases depending
on the states of the qubits to which it is coupled, even in
the idle mode. It is then necessary to keep track of these
phases, or suppress them by repeated refocusing pulses
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and complicates the operation [8,9]. In the case of off
diagonal interactions, the interactions will moreover
cause the states of the qubits to propagate, which results
in errors. It is then necessary to devise methods to avoid
these problems. Even if the couplings can be tuned, a
scheme which allows one to compute without switching
the couplings is very useful, because it simplifies the
operation drastically and is likely to help reduce decoher-
ence. This simplified computing scheme, in which the
necessity of switching the couplings between qubits is
removed, is the goal of this work, and we attack this
problem by computing in carefully designed subspaces
analogous to decoherence free subspaces.

Let us first explain our approach intuitively. One of the
strategies to fight against decoherence is to compute in
the so-called ‘‘decoherence free subspace’’ (DFS), in
which the state of the system (a logical bit consisting of
several physical qubits) is unaffected by the environment
even though they are always coupled [10]. DFS exists in
the case of ‘‘collective decoherence,’’ i.e., when the in-
volved qubits couple to the same mode of the environ-
ment. Now imagine that we replace the environment with
another collection of qubits. Obviously, we expect analo-
gous subspaces of the two coupled collections of qubits to
exist, as long as certain conditions similar to those for
DFS are satisfied. To be more specific, states that are
annihilated by the interaction Hamiltonian will not
evolve because of the coupling. If we stay in these sub-
spaces, we can then prevent the (encoded) qubits from
affecting each other and operate on the individual logical
bits as if they were not coupled to other bits. On the other
hand, when we do want the (encoded) bits to interact for
two bit operations, we simply drive them out of these
subspaces. Therefore, we can effectively turn off and turn
on the interaction between the encoded bits by staying in
and getting out of these subspaces. We see that even
though the subspaces we discussed rely on the same
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FIG. 1. Architecture of the quantum computer for diagonal
interactions. Each dot is a physical qubit and the lines represent
couplings between qubits. Two qubits (a; b) connected by a
vertical line is an encoded qubit.
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different purpose, and we do not intend to stay in them
throughout the computation, as opposed to DFS. Another
important difference is that in the case of DFS, it is
assumed that the environment and its coupling strength
with the qubits are uncontrollable. On the contrary, in our
case we can certainly manipulate both parties involved
and put them in or out of their related subspaces. We can
choose the way and the strength with which the qubits are
coupled, either in fabrication or during initialization of
the system, though the couplings cannot be tuned
throughout the computation. Because of these distinc-
tions, we call this new concept the ‘‘interaction free sub-
space’’ (IFS).

In the following we discuss in detail how our scheme
can be used for both diagonal and off diagonal interac-
tions. A general model for a quantum computer is de-
scribed by the following Hamiltonian:

H � �
X
i

~ffi � ~��i �
X
i<j

X
	;�

J	�ij �	
i �

�
j ; (1)

where ~ffi is the effective local field applied to individual
qubits, �	, �� are the Pauli matrices, and J is the cou-
pling strength. As we discussed before, we are interested
in situations in which local operations are easy and fast to
implement, while two bit operations are hard and slow.
We assume that local resources are ‘‘free’’, i.e., strong
local pulse fields ~ffi can be applied and single bit gates
are instantaneous. We then only count the time when the
interaction is on (i.e., when the encoded bits sit out of the
IFS). We assume that the values of Jij, i.e., the coupling
strength between qubits can be chosen in the fabrication
or initialization of the system, but cannot be tuned during
the computation. (The dependence on 	;� is determined
by the nature of the physical interaction.) When the
interaction is on, we occasionally need to apply local
gates to the individual qubits involved, and we assume
that the field used for these local gates is so strong that the
local operation is not distorted by the interactions.

We first consider the case of diagonal interactions, i.e.,
when the interaction between two (physical) qubits takes
the form Jz12�

z
1 � �

z
2 (the Ising interaction). In this case,

two physical qubits per logical bit can fulfill our needs.
As shown in Fig. 1 a possible architecture of the quantum
computer in this case is a one dimensional array consist-
ing of encoded qubits, which are two physical qubits (a, b
in the figure) coupled with strength J0. All physical
qubits in neighboring logical bits are coupled with the
same strength J1, which is not necessarily different from
J0. Our codes for the IFS are simply j0i � j "a#bi and
j1i � j #a"bi. Indeed, for two neighboring encoded bits,
the interaction Hamiltonian is Hint � J1	�

z
1a � �z

1b
 �
	�z

2a � �z
2b
, which annihilates these two states. In addi-

tion, these two states are degenerate under the self
Hamiltonian J0�z

a � �
z
b. Therefore, if we store informa-

tion in these states, no evolution whatsoever is present.
There is thus no need to keep track of any phases; a logical
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bit in the IFS is automatically in the idle mode. Actually,
in order to avoid interactions between the encoded qubits,
it suffices to keep half of the qubits (all odd or even
numbered ones) in the IFS. However, as will be seen it
is inevitable to get out of the IFS even when single bit
operations are performed on the encoded qubits, since the
only resources we have are single (physical) bit rotations.
We thus keep all the logical bits in the IFS during the
idle mode.

Now we discuss how universal computation can be
realized on these encoded qubits, using local operations
to the physical qubits only. Suppose we are operating on a
particular encoded bit (meaning applying single bit gates
on its qubits a and b). Since its neighboring bits are in
IFS, we can work on the particular bit as if it were
decoupled from the rest of the system. First, we notice
that single bit gates can be decomposed into arbitrary
rotations around the z axis and the Hadamard gate

H �
1���
2

p

�
1 1
1 �1

�
: (2)

To induce a rotation around the z axis, all we have to do is
to break the degeneracy between j0i and j1i, which can be
done by applying a local field in the z direction to bit a (or
b) for a certain amount of time. A Hadamard gate on the
bases j0i, j1i is more complex, but as can be easily verified
it can be realized with the gate sequence CNOT	a; b
 � Ha �
CNOT	a; b
, where CNOT	a; b
 is a CNOT gate between a, b
with a as the control bit, and Ha is a Hadamard on
bit a. Ha is readily realizable, while CNOT	a; b
 can be
done by sandwiching a CPHASE gate between a and b
with Ha. The CPHASE gate is easy to implement with the
Ising interaction and local phase gates: CPHASE �
e�i�z

a�
z
b�=4ei�

z
a�=4ei�

z
b�=4. Altogether, a Hadamard on the

code states requires nine local gates and two interaction
periods, which takes a time �=2J0 (local gates are as-
sumed instantaneous). We note that it is necessary to get
out of the code space j "a#bi, j #a"bi in order to realize the
Hadamard. This is unavoidable in the current model,
since the only allowed resources are local unitaries. As
a result, single bit gates on the encoded qubits cannot be
performed simultaneously to neighboring bits. But a
‘‘half parallel’’ operation mode is still allowed, in which
197903-2
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FIG. 2. Architecture of the quantum computer for off diago-
nal interactions. Each logical bit consists of three physical
bits, the information carrying qubit (the star) and an ‘‘isolator’’
(the dots connected with a dashed line).
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all odd or even numbered logical bits are operated on at
the same time. This restriction can be removed by explor-
ing more complex encoding schemes (see the example for
off diagonal interactions below), but more resources
(more physical qubits per logical bit) are required.

We still need to show how two bit gates can be real-
ized. For this purpose, we need to drive the involved
(neighboring) bits out of the IFS, let them interact for
some time, then drive them back. The first step is to
apply a local gate to flip the state of b, which changes
the two code states to j "a"bi and j #a#bi. Note these two
states are eigenstates of �z=2 � 	�z

a � �z
b
=2 with eigen-

values �1. It is then straightforward that a CPHASE

gate between 1, 2 (on j "a"bi and j #a#bi) can be realized
with the sequence e�i	�z

1=2
	�
z
2=2
�=4ei	�

z
1=2
�=4ei	�

z
2=2
�=4,

or e�i	�z
1a��z

1b
	�
z
2a��z

2b
�=16ei�
z
1a�=8ei�

z
1b�=8ei�

z
2a�=8ei�

z
2b�=8.

Once this is done, we simply flip the state of b again to
drive the logical bits back into the IFS. This procedure
realizes a CPHASE gate between two encoded bits and
puts them back in the IFS at the end. A total number of
eight local operations and one interaction is necessary,
and the time required is �=16J1. This time is actually
shorter than that needed in an ordinary Ising model with
switchable couplings, �=4J1.

For completeness let us discuss briefly how the system
can be initialized in the IFS and how the states of the
encoded bits can be measured. If we apply a strong global
field in the z direction to all the physical qubits, at low
temperatures all bits will line up with the field. Then
starting with the leftmost qubit, we can drive all the
bits into IFS by simply flipping the state of one of a, b.
To read out the state of the encoded bits, a measurement
on its a or b suffices.

With the procedures discussed above for diagonal in-
teractions, we can turn on and off the interactions be-
tween the logical qubits without a physical switch. This is
readily applicable in superconducting quantum computa-
tion. Here, local fields can be easily applied simply by
changing the biases of the superconducting qubits or
applying ac fields. Typical times for single bit gates range
from hundreds of ps to tens of ns [2,5,8], depending on
the type of the qubits and the choice of the parameters.
Coherent control of single superconducting qubits has
been experimentally realized [11,12]. With the fast op-
eration speed [11] and long decoherence time [12] ex-
perimentally demonstrated, large scale superconducting
quantum computers can be constructed with the aid of
IFS. The uniform couplings required (in Fig. 1, couplings
between physical qubits in neighboring logical bits should
all be J1) are relatively easy to realize in superconducting
designs, as mutual inductances can be calculated and
fabricated very precisely. Were it necessary to compen-
sate for fabrication imperfections, simple schemes for
minor adjustment of the coupling are readily accom-
plished. This calibration step can be very slow, so the
leads used for calibration can be heavily filtered to keep
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out the noise. For more detailed discussion on the appli-
cation of our scheme in superconducting quantum com-
puting, see Ref. [13].

We now turn to the case of off diagonal interactions.We
will focus on the isotropic and anisotropic exchange
interactions, Hint � Jxy	�x

1�
x
2 ��y

1�
y
2
� Jz�

z
1�

z
2, since

these are most frequently encountered in quantum com-
puting proposals. If both dissipation and decoherence are
present, decoherence free subspace requires 4 bits per
encoded bit [10]. However as we discussed earlier we
have more control in constructing IFS, and it is possible
to use less resources. In our case 3 bits per logical bit is
enough. A few designs are possible, but let us consider the
architecture shown in Fig. 2. Here, each logical bit con-
tains three physical qubits.We have represented them with
stars and dots, not because they are physically distinct,
but because they play different roles. The stars are the
information carrying qubits, while the dots are ‘‘isola-
tors’’ in the singlet state 	j "i1 #i2i� j #i1 "i2i
=

���
2

p
. To see the

origin of the name, we note that all the stars are coupled
to their neighboring dots with the same strength J1
(meaning the same Jxy, Jz). Hence the interaction
Hamiltonian between the information carrier and its iso-
lator is 2Jxy	�

�
q �

�
i ���

q �
�
i 
� Jz�

z
q�

z
i , where �� �

	�x� i�y
=2 and ��;z
i ���;z

i1
���;z

i2
. Since the singlet

state is annihilated by the operators ��;z
i , we see that

if all the dots are in the singlet state, the stars will
be isolated from each other and no phase exchange and
state propagation will happen, hence the name isolators.
The IFS is spanned by j "qi	j "i1 #i2i� j #i1"i2i
=

���
2

p
and

j #qi	j "i1#i2i� j #i1 "i2i
=
���
2

p
. To prepare the isolators in the

singlet state, we turn on all couplings between the dots
(the vertical dashed lines) while keep all couplings be-
tween the stars and the dots (the solid lines) off during the
initialization process. This is necessary to stop the propa-
gation of the states in the qubit array. Here we are assum-
ing that switching of the coupling is possible but hard and
slow. Since initialization and computation are subject to
different restrictions (initialization needs done only once,
and it does not need to be done quickly), the global
switches are used to initialize the system. At low tem-
peratures, the isolators will then relax to the singlet which
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is the lowest energy eigenstate. Once the initialization is
done, we can then start the computation by turning off all
couplings represented by dashed lines and turning on
those represented by solid lines. According to our as-
sumption, these couplings will remain untuned through-
out the computation.

We see that single bit gates are trivial; we simply
operate on the stars directly as if they were not coupled
to anything else. Fully parallel operations are possible,
thanks to the use of isolators. Two bit gates are more
complicated. A two bit operation between the stars q1
and q2 in Fig. 2 must involve the isolator i1, i2, which
separates them, because there is no direct connection
between q1 and q2. One idea is to swap the states of q1
and i1, perform a control gate between i1 and q2, and swap
the states of q1 and i1 back. These steps can be done, if we
can simulate dynamics generated by �x

q1�
x
i1
� �y

q1�
y
i1

(and similarly for i1 and q2), which can be used to gen-
erate swap and CNOT gates [9]. This is possible
with our available resources, namely, local unitaries
and the interaction Hamiltonian Hqi � Jxy	�x

q�
x
i �

�y
q�

y
i 
 � Jz�z

q�
z
i [14]. Here we discuss a method

based on selective coupling. Note that for a small time
t � �=	32NJxy
, where N is some large integer, we
have e�iHqit�x

q1�
x
q2e

�iHqit�x
q1�

x
q2 � e�i2Jxyt�x

q�
x
i � o	t
.

This can be further used to generate operators
we want: e�i2Jxyt�

x
q�

x
i �z

q2e
�i2Jxyt�

x
q�

x
i �z

q2 � e�i4Jxyt�x
q1
�x

i ,

e�i4Jxyt�x
q1
�x

i �z
i2
e�i4Jxyt�x

q1
�x

i �z
i2
� e�i8Jxyt�x

q1
�x
i1 . Similarly

we can synthesize e�i8Jxyt�
y
q1
�y
i1 . Repeating this procedure

N times, we then get the transformation
e�i	�x

q1
�x
i1
��y

q1
�y
i1

�=4, which is a swap gate between q1

and i1 (and multiplication by �i when their states are
different) [9]. In order to reduce the error, the number of
repetition N can be quite large [15], therefore many local
gates (44N in total) are needed. The interaction time
needed is �=2Jxy. The CNOT (or CPHASE) gate between
i1 and q2 after this swap operation and the operation to
swap back the states of i1 and q1 can be done by following
the same procedure. The interaction times required are
�=2Jxy each. Therefore the total interaction time is
3�=2Jxy, in comparison with �=4Jxy which is needed in
a switchable XY model [16]. This prescription verifies the
possibility of universal quantum computation in our cur-
rent example. Finding physical systems to which our
scheme discussed above can apply, and a set of manipu-
lations that allow us to minimize the complexity of the
operation, is of further interest to us.

In summary, we have devised a scheme for universal
and scalable quantum computation without the need to
tune the couplings between qubits. This relies on the idea
of computing with logical bits consisting of several physi-
cal qubits, which can be put in and driven out of the IFS.
We gave two examples of how universal quantum com-
putation can be done with our scheme. We emphasize that
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our strategy can be adopted in forms and contexts other
than the examples discussed. With potential applications
in superconducting quantum computation and a few other
cases, our scheme is likely to help simplify the design and
ease the operation of quantum computers.

Before we conclude, we should mention that the ‘‘com-
plimentary’’ problem to ours, in which single bit opera-
tions are hard and desired to be avoided, has been
discussed [17]. Our scheme is much in the same spirit in
the sense of using encoded qubits for computation, but it
is for a different purpose and it has a closer analogy to
decoherence free subspaces.
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