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A goal of quantum information technology is to control the quantum state of a system, including its
preparation, manipulation, and measurement. However, scalability to many qubits and controlled con-
nectivity between any selected qubits are two of the major stumbling blocks to achieve quantum com-
puting (QC). Here we propose an experimental method, using Josephson charge qubits, to efficiently
solve these two central problems. The proposed QC architecture is scalable since any two charge qubits
can be effectively coupled by an experimentally accessible inductance. More importantly, we formulate
an efficient and realizable QC scheme that requires only one (instead of two or more) two-bit operation
to implement conditional gates.
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qubits was proposed [1,3] in terms of the oscillator modes coupled by two symmetric dc SQUIDs and biased by an
The macroscopic quantum effects in low-capacitance
Josephson-junction circuits have recently been used to
realize qubits for quantum information processing, and
these qubits are expected to be scalable to large-scale
circuits using modern microfabrication techniques.
Josephson-qubit devices [1] are based on the charge and
phase degrees of freedom. The charge qubit is achieved in
a Cooper-pair box [2], where two dominant charge states
are coupled through coherent Cooper-pair tunneling [3],
while the phase qubit is based on two different flux states
in a small superconducting-quantum-interference-device
(SQUID) loop [4,5]. Experimentally, the energy-level
splitting and the related properties of state superpositions
were observed via Cooper-pair tunneling in the Joseph-
son charge device [6,7] and by spectroscopic measure-
ments for the Josephson phase device [8,9]. Moreover,
coherent oscillations were demonstrated in a Josephson
charge device prepared in a superposition of two charge
states [2]. These striking experimental observations re-
veal that the Josephson charge and phase devices are
suitable for solid-state qubits in quantum information
processing. The next immediate challenge would include
implementing a two-bit coupling and then scaling up the
architecture to many qubits. Here, we focus on the
Josephson charge qubit realized in a Cooper-pair box
and propose a new quantum-computing (QC) scheme
based on scalable charge-qubit structures.

A straightforward way of coupling Josephson charge
qubits is to use the Coulomb interactions between charges
on different islands of the charge qubits (e.g., to connect
two Cooper-pair boxes via a capacitor). A two-bit opera-
tion [10], similar to the controlled-NOT gate, was derived
using this interbit coupling, but it is hard to switch the
coupling on and off [1] in this scheme as well as to make
the system scalable because only neighboring qubits can
be coupled. A scalable way of coupling Josephson charge
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in an LC circuit formed by an inductance and the qubit
capacitors. In this design, the interbit coupling is switch-
able and any two charge qubits can be coupled. However,
there is no efficient (i.e., using one two-bit operation) QC
scheme for this design [1,3] to achieve conditional gates
such as the controlled-phase-shift and controlled-NOT

gates. Moreover, the calculated interbit coupling terms
[1,3] apply only to the case when two conditions are met:
(i) the eigenfrequency !LC of the LC circuit is much
faster than the quantum manipulation frequencies (which
limits the allowed number N of the qubits in the circuit
because !LC scales with 1=

����
N

p
) and (ii) the phase con-

jugate to the total charge on the qubit capacitors fluctuates
weakly. These two limitations do not apply to our ap-
proach. In our proposal, a common inductance (but no LC
circuit) is used to couple all Josephson charge qubits. In
our scheme, both dc and ac supercurrents can flow
through the inductance, while in [1,3] only ac supercur-
rents can flow through the inductance and it is the
LC-oscillator mode that couples the charge qubits.
These yield different interbit couplings (e.g., �y�y type
[1,3] as opposed to �x�x in our scheme). To have a
controllable interbit coupling, we employ two dc
SQUIDs to connect each Cooper-pair box. Our proposed
QC architecture is scalable in the sense that any two
charge qubits (not necessarily neighbors) can be effec-
tively coupled by an experimentally accessible induc-
tance. More importantly, we formulate an efficient QC
scheme that requires only one (instead of two or more)
two-bit operation to implement conditional gates. To our
knowledge, this is the first efficient scalable QC scheme
for this type of architecture.

The proposed quantum computer consists ofN Cooper-
pair boxes coupled by a common superconducting in-
ductance L (see Fig. 1). For the kth Cooper-pair box, a
superconducting island with charge Qk � 2enk is weakly
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FIG. 1. Schematic diagram of the proposed scalable and
switchable quantum computer. All Josephson charge-qubit
structures are coupled by a common superconducting induc-
tance. Here, each Cooper-pair box is operated both in the
charging regime Eck � E0Jk and at low temperatures kBT �
Eck. Moreover, the superconducting gap is larger than Eck, so
that quasiparticle tunneling is prohibited in the system.
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applied voltage VXk through a gate capacitance Ck. The
two symmetric dc SQUIDs are assumed to be identical
and all Josephson junctions in them have Josephson cou-
pling energy E0Jk and capacitance CJk. Each SQUID
pierced by a magnetic flux �Xk provides an effective
coupling energy given by �EJk��Xk� cos�kA�B�, with
EJk��Xk� � 2E0Jk cos���Xk=�0�, and �0 � h=2e is the
flux quantum. The effective phase drop �kA�B�, with sub-
script A�B� labeling the SQUID above (below) the island,
equals the average value, ��L

kA�B� ��R
kA�B��=2, of the

phase drops across the two Josephson junctions in the
dc SQUID, where the superscript L (R) denotes the left
(right) Josephson junction. Since the size of the loop is
usually very small (	 1 �m), above we have ignored the
self-inductance effects of each SQUID loop. The
Hamiltonian of the system is H �

P
N
k�1Hk �

1
2LI

2 ,
with Hk given by Hk � Eck�nk � nXk�

2 � EJk��Xk� 

�cos�kA � cos�kB�. Here, Eck � 2e2=�Ck � 4CJk� is the
charging energy of the superconducting island and I �PN
k�1 Ik is the total persistent current through the super-

conducting inductance, as contributed by all coupled
Cooper-pair boxes. The offset charge 2enXk � CkVXk is
induced by the gate voltage VXk. The phase drops �L

kA
and �L

kB are related to the total flux � � �e � LI
through the inductance L by the constraint �L

kB ��L
kA �

2��=�0, where �e is the externally applied magnetic
flux threading the inductance L. Without loss of general-
ity and in order to implement QC more conveniently, the
magnetic fluxes through the two SQUID loops of each
Cooper-pair box are designed to have the same values but
opposite directions; this simplifies the form of the
Hamiltonian. (If this were not to be the case, the interbit
coupling can still be realized, but the Hamiltonian of the
qubit circuits takes a more complicated form.) Because
this pair of fluxes cancels each other in any loop enclosing
them, then �L

kB ��L
kA � �R

kB ��R
kA. This gives rise to

the constraint �kB ��kA � 2��=�0 for the average
phase drops across the Josephson junctions in the
SQUIDs. The common superconducting inductance L
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plays the role of coupling Cooper-pair boxes. The cou-
pling of selected Cooper-pair boxes can be implemented
by switching on the SQUIDs connected to the chosen
Cooper-pair boxes, and the persistent currents through
the inductance L are composed of contributions from all
the coupled Cooper-pair boxes.

One- and two-bit circuits.—For any given Cooper-pair
box, say i, when �Xk �

1
2�0 and VXk � �2nk � 1�e=Ck

for all boxes except k � i, the inductance L connects only
the ith Cooper-pair box to form a superconducting loop
[see Fig. 2(a)]. The Hamiltonian of the system can be
reduced to [11]

H � "i�VXi��
�i�
z � EJi��Xi;�e; L��

�i�
x ; (1)

where "k�VXk� is controllable via the gate voltage VXi,
while the intrabit coupling EJk��Xi;�e; L� can be con-
trolled by both the applied external flux �e through the
common inductance, and the local flux �Xi through the
two SQUID loops of the ith Cooper-pair box. The intrabit
coupling EJi in (1) is different from that in [1,3] because
a very different contribution by L is considered. To couple
any two Cooper-pair boxes, say i and j, we choose�Xk �
1
2�0 and VXk � �2nk � 1�e=Ck for all boxes except k � i
and j. As shown in Fig. 2(b), the inductance L is shared
by the Cooper-pair boxes i and j to form superconduct-
ing loops. The reduced Hamiltonian of the system is
given by [13]

H �
X

k�i;j

�"k�VXk��
�k�
z � EJk�

�k�
x � ��ij�

�i�
x �

�j�
x : (2)

Here the interbit coupling �ij is controlled by both the
external flux �e through the inductance L, and the local
fluxes, �Xi and �Xj, through the SQUID loops.

Quantum computing.—The quantum system evolves
according to U�t� � exp��iHt= �h�. Initially, we choose
�Xk �

1
2�0 and VXk � �2nk � 1�e=Ck for all boxes in

Fig. 1, so that the Hamiltonian of the system is H � 0
and no time evolution occurs. Afterwards, we switch
certain fluxes �Xk and/or gate voltages VXk away from
the above initial values for certain periods of times, to
implement logic gates required for QC. For any two
Cooper-pair boxes, say i and j, when fluxes �Xi and
�Xj are switched away from the initial value �0=2 for a
given period of time #, the Hamiltonian of the system
becomes H � �EJi�

�i�
x � EJj�

�j�
x ��ij�

�i�
x �

�j�
x . This an-

isotropic Hamiltonian is Ising-like [14], with its aniso-
tropic direction and the ‘‘magnetic’’ field along the x axis.
When the parameters are suitably chosen so that EJi �
EJj � �ij � �� �h=4# for the switching time #, we ob-
tain a controlled-phase-shift gate, U0

CPS � ei�=4U2b �

expfi �4 �1� ��i�
x � ��j�

x � ��i�
x �

�j�
x �g, which does not alter

the two-bit states j�iij�ij, j�iij�ij, and j�iij�ij but
transforms j�iij�ij to �j�iij�ij. Here, the phase factor
ei�=4 corresponds to an overall energy shift of the Hamil-
tonian, and j�i are defined by j�i � �j "i � j #i�=

���
2

p
.

To obtain the controlled-phase-shift gate UCPS for the
basis states j "iij "ij, j "iij #ij, j #iij "ij, and j #iij #ij, one
197902-2



L
V

Φ

C

E
φ

φ

(a)

E V V

C C

Φ
L

E
φ

E
φ

φ φ

(b)

E E

J

Jj

j

j

j

FIG. 2. (a) One-bit circuit with a Cooper-pair box connected to the inductance. (b) Two-bit structure where two Cooper-pair boxes
are commonly connected to the inductance. Here, each SQUID connecting the superconducting island is represented by an effective
Josephson junction.
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needs to combine U0
CPS with suitable one-bit rotations.

For any Cooper-pair box, say i, one can shift flux �Xi
and/or gate voltage VXi for a given switching time #
to derive one-bit rotations. A universal set of one-
bit gates U�i�

z �&� � ei&�
�i�
z , and U�i�

x �'� � ei'�
�i�
x , where

& � �"i�VXi�#= �h and ' � EJi#= �h, can be defined by
choosing EJi � 0 and "i�VXi� � 0 (which can be done
with suitable choices of �Xi and VXi) in the one-bit
Hamiltonian (1), respectively. Any one-bit rotation can be
derived in terms of these two types of one-bit gates.
For instance, the Hadamard gate is given by
H i � e�i�=2U�i�

z ��4�U
�i�
x ��4�U

�i�
z ��4�. Using H i, we de-

rive the controlled-phase-shift gate UCPS: UCPS �
H y

jH
y
i U

0
CPSH iH j. The one-bit rotation Vj � ei��

�j�
y =4

is given by Vj � U�j�
z �� �

4�U
�j�
x ��4�U

�j�
z ��4�. Combining

Vj with UCPS, we obtain the controlled-NOT gate,
UCNOT � Vy

j UCPSVj , which transforms the basis states
as j "iij "ij ! j "iij "ij, j "iij #ij ! j "iij #ij, j #iij "ij !
j #iij #ij, and j #iij #ij ! j #iij "ij. A sequence of such con-
ditional two-bit gates supplemented with one-bit rotations
constitute a universal element for QC [15]. Usually, a two-
bit operation is much slower than a one-bit operation. Our
designs for conditional gates UCPS and UCNOT are efficient
since only one (instead of two or more) two-bit operation
U0
CPS is used.
Persistent currents and entanglement.—The one-bit

circuit modeled by Hamiltonian (1) has two eigenvalues
E�i�
� � �Ei, with Ei � �"2i �VXi� � E2Ji�

1=2. The corre-
sponding eigenstates are j �i�

� i � cos)ij "ii � sin)ij #ii,
and j �i�

� i � sin)ij "ii � cos)ij #ii, where )i �
1
2 tan

�1�EJi="i�. At these two eigenstates, the per-
sistent currents through the inductance L are
given by h �i�

� jIj �i�
� i � ��EJiIci=Ei� sin���e=�0��

��LI2ci=2�0� sin�2��e=�0�, where the expansion in I is
retained up to the linear term in *i. When a dc SQUID
magnetometer is inductively coupled to the inductance L,
these two supercurrents generate different fluxes through
the SQUID loop of the magnetometer and the quantum-
state information of the one-bit structure can be obtained
from the measurements. To perform sensitive measure-
ments with weak dephasing, one could use the under-
damped dc SQUID magnetometer designed previously
for the Josephson phase qubit [4,8].
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For the two-bit structure described by Eq. (2), the
Hamiltonian has four eigenstates and the supercurrents
through inductance L take different values at these states.
The fluxes produced by the supercurrents through L can
also be detected by the dc SQUID magnetometer. For
instance, when "k�VXk� � 0 and EJk > 0 for k � i and j,
the four eigenstates of the two-bit structure are

j1i � 1
2�j "iij "ij � j "iij #ij � j #iij "ij � j #iij #ij�;

j2i � 1
2�j "iij "ij � j "iij #ij � j #iij "ij � j #iij #ij�;

j3i � 1
2�j "iij "ij � j "iij #ij � j #iij "ij � j #iij #ij�;

j4i � 1
2�j "iij "ij � j "iij #ij � j #iij "ij � j #iij #ij�:

When expansions in Ii and Ij are retained up to the linear
terms in *i and *j, the corresponding supercurrents
through inductance L are hkjIjki � Ik sin���e=�0� �
��LI2k=2�0� sin�2��e=�0� for k � 1 to 4, where I1 �
��Ici � Icj�, I2 � Icj � Ici, I3 � Ici � Icj, and I4 �
Ici � Icj. These supercurrents produce different fluxes
threading the SQUID loop of the magnetometer and
can be distinguished by dc SQUID measurements. If the
two-bit system is prepared at the maximally entangled
Bell states j����i � �j "iij #ij � j #iij "ij�=

���
2

p
, the super-

currents through L are given by h����jIj����i �
��L=2�0��Ici � Icj�

2 sin�2��e=�0�. These two states
should be distinguishable by detecting the fluxes (gener-
ated by the supercurrents) through the SQUID loop of the
magnetometer.

Discussion.—The typical switching time #�1� during a
one-bit operation is of the order �h=E0J. For the experi-
mental value of E0J 	 100 mK, there is #�1� 	 0:1 ns. The
switching time #�2� for the two-bit operation is typically
of the order � �h=L���0=�E

0
J�
2. Choosing E0J 	 100 mK

and #�2� 	 10#�1� (i.e., 10 times slower than the one-bit
rotation), we have L	 30 nH in our proposal, which is
experimentally accessible. A small-size inductance with
this value can be made with Josephson junctions. Our
expansion parameter * is of the order �2LE0J=�

2
0 	 0:1.

Our inductance L is related with the inductance L0 in [1,3]
by L0 � �CJ=Cqb�2L. Let us now consider the case when
#�2� 	 10#�1�. For the earlier design [3], CJ 	 11Cqb since
Cg=CJ 	 0:1, which requires the inductance 	3:6 �H.
Such a large inductance is difficult to fabricate at nano-
meter scales. In the improved design [1], CJ 	 2Cqb,
197902-3
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greatly reducing the inductance to 	120 nH. This induc-
tance is about 4 times larger than the one used in our
scheme.

All charge qubits suffer decoherence due to the fluctu-
ations of voltage sources and fluxes. Reference [1] shows
that the gate voltage fluctuations play the dominant role
in producing decoherence. The estimated dephasing time
is #’ 	 10�4 s, allowing in principle 106 coherent single-
bit manipulations. When a probe junction is used for
measurements, the experimental observations of coherent
oscillations in the Josephson charge qubits show that the
phase coherence time is only about 2 ns [2,16]. In this
experimental setup, background charge fluctuations and
the probe-junction measurement may be two of the major
factors in producing decoherences. Though the charge
fluctuations are important only in the low-frequency re-
gion and can be reduced by the echo technique [16] and
by shifting the gate voltage to the degeneracy point, an
effective technique for suppressing charge fluctuations
still needs to be explored. As for the measurement, it
has also been a challenge to design effective detecting
devices.

In conclusion, we propose a scalable quantum com-
puter with Josephson charge qubits.We employ a common
inductance to couple all charge qubits and design switch-
able interbit couplings using two dc SQUIDs to connect
the island in each Cooper-pair box. The proposed QC
architectures are scalable since any two charge qubits
can be effectively coupled by an experimentally acces-
sible inductance. Furthermore, we formulate an efficient
QC scheme in which only one two-bit operation is used in
the conditional transformations such as controlled-phase-
shift and controlled-NOT gates.
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