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Spin-Spin Cross Relaxation in Single-Molecule Magnets
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The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain
the measured tunnel transitions. An improvement to the picture is proposed by including also two-body
tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak
superexchange interactions between molecules. A Mn, SMM is used as a model system. At certain
external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop
measurements as well-defined steps. A simple model is used to explain quantitatively all observed

transitions.
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Single-molecule magnets (SMMs) [1] are one of the
best systems for studying quantum tunneling of large
moments. Each molecule functions as a nanoscale,
single-domain magnetic particle that, below its blocking
temperature, exhibits the classical macroscale property of
a magnet, namely, magnetization hysteresis. Such a mole-
cule straddles the classical/quantum interface in also
displaying quantum tunneling of magnetization [2-7]
and quantum phase interference [8,9]. Most theoretical
work until now treats crystals of SMMs as consisting of
giant spins interacting with environmental degrees of
freedom such as magnetic fields, phonons, and nuclear
spins (see references in [10,11]). Interactions between
SMMs were mainly restricted to dipolar couplings which
can lead to square root relaxation laws [12] and magnetic
ordering [10,11].

Since SMMs occur as assemblies in crystals, there is
the possibility of a small electronic interaction of adjacent
molecules. This leads to very small superexchange inter-
actions (or exchange interactions, for short) that depend
strongly on the distance and the nonmagnetic atoms in the
exchange pathway. Until now, such an intermolecular
exchange interaction has been assumed to be negligibly
small. However, our recent studies on about 50 SMMs
suggest that in most SMMs exchange interactions lead to
a significant influence on the tunnel process. Recently,
this intermolecular exchange interaction was used to
couple antiferromagnetically two SMMs, each acting as
a bias on its neighbor, resulting in quantum behavior
different from that of individual SMMs [13].

In this Letter, we show that dipolar and/or exchange
interactions can lead to collective quantum processes.
The one-body tunnel picture of SMMs is therefore not
always sufficient to explain the measured tunnel transi-
tions. We propose to improve the picture by including also
two-body tunnel transitions such as spin-spin cross re-
laxation (SSCR) [14,15]. A simple model allows us to
explain quantitatively all observed transitions. Including
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three-body transitions or dealing with the many-body
problem is beyond the scope of this paper.

The SMM has the formula [Mn,O;(OSiMe;)
(OAc);(dbm);], called briefly Mn,. The preparation, x-
ray structure, and detailed physical characterization have
been reported [16]. Mn, crystallizes in a hexagonal space
group with crystallographic C; symmetry. The complex
has a distorted cubanelike core geometry and is
Mn{"™™n!V. The C; axis passes through the Mn'Y ion
and the triply bridging siloxide group. The dc and ac
magnetic susceptibility measurements indicate a well
isolated § = 9/2 ground state [16].

All measurements were performed using an array of
micro-SQUIDs [17]. The high sensitivity allows us to
study single crystals of SMMs of the order of 10 to
500 um. The field can be applied in any direction by
separately driving three orthogonal coils.

We first review briefly the single-spin model which is
the simplest model describing the spin system of an
isolated SMM. The spin Hamiltonian is

>

j-[i = _DSii + j-[trans,i + g/-LB:U’OSi H. ey

Syi» Sy,i» and S_; are the components of the spin operator;
D is the anisotropy constant defining an Ising type of
anisotropy; H trans,i» containing S, ; or S, ; spin operators,
gives the transverse anisotropy which is small compared
to DS?; in SMMs; and the last term describes the Zeeman
energy associated with an applied field H. The index i
labels different SMMs (see below). This Hamiltonian has
an energy level spectrum with (25 + 1) values which, to a
first approximation, can be labeled by the quantum num-
bers m = —S, —(§ — 1),..., S taking the z axis as the
quantization axis. The energy spectrum can be obtained
by using standard diagonalization techniques (Fig. 1). At
H = 0, the levels m = £§ have the lowest energy. When a
field H, is applied, the levels with m > 0 decrease in
energy, while those with m <0 increase. Therefore,
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FIG. 1. Zeeman diagram of the ten levels of the S =9/2
manifold of Mn, as a function of the field applied along the
easy axis [Eq. (1) with D = 0.72 K, and a transverse anisotropy
term E(S? — $3) with E = 0.033 K [18]]. From bottom to top,
the levels are labeled with quantum numbers m = +9/2, +
7/2, ..., %£1/2. The levels cross at fields given by AH, =~ n X
053T,withn=12.... The arrows, labeled from 1 to 13,
indicate two-body tunnel transitions that are given in Table 1.

energy levels of positive and negative quantum numbers
cross at certain values of H, given by uoH, = nD/gusg,
wheren =0, 1, 2, 3,....

When the spin Hamiltonian contains transverse terms
(H ans), the level crossings can be avoided level cross-
ings. The spin S is in resonance between two states when
the local longitudinal field is close to an avoided level
crossing. The energy gap, the so-called tunnel splitting A,
can be tuned by a transverse field (perpendicular to the S,
direction).

The effect of these avoided level crossings can be seen
in hysteresis loop measurements. Figures 2 and 3 show
typical hysteresis loops for a single crystal of Mn,. When
the applied field is near an avoided level crossing, the
magnetization relaxes faster, yielding steps separated by
plateaus. A closer examination of the tunnel transitions,
however, shows fine structures which cannot be explained
by the above model. We suggest that these additional steps
are due to a collective quantum process, called SSCR,
involving pairs of SMMs which are coupled by dipolar
and/or exchange interactions. We used different tech-
niques to show that different species due to loss of solvent
or other defects are not the reason of the observed addi-
tional resonance transitions. Such SSCR processes were
recently observed in the thermally activated regime of a
LiYF, single crystal doped with Ho ions [19].

In order to obtain an approximate understanding of
SSCR, we consider the Hamiltonian describing two
coupled SMMs:

H=H,+H,+IS S, 2)

where each SMM is modeled by a giant spin with a spin
ground state S and an Ising-like anisotropy; the corre-
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FIG. 2. Hysteresis loop measurements of a single crystal of
Mn, at low temperatures (40 mK) where thermal activation to
excited spin states can be neglected. The field is applied in the
direction of the easy axis of magnetization and swept at a
constant rate between 0.002 and 0.14 T/s. The tunnel transi-
tions 7, 11, and 13 are SSCR (Table I). Inset: Enlargement for
the higher field region.

sponding Hamiltonian is given by Eq. (1), where i = 1 or
2 labels the two SMMs. The two SMMs are coupled by a
small exchange interaction J which comprises the con-
tributions of dipole-dipole and/or superexchange interac-
tions [Eq. (2)]. For simplicity, we have assumed isotropic
exchange. The (2S5 + 1)(2S + 1) energy states of the
dimer can be calculated by exact diagonalization and
are plotted in Fig. 4 as a function of a magnetic field
applied along the easy axis of magnetization. Any energy
level crossing of such a diagram can be a possible quan-
tum transition depending on the magnitude of transverse
terms [Eqs. (1) and (2)] and the type of the transition. We
will see that only a few of them are relevant at very low
temperatures.

Before proceeding to the detailed discussion of this
diagram, it is important to note that, in reality, a SMM is
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FIG. 3. Hysteresis loop measurements similar to Fig. 2 but at
different temperatures and for a field sweep rate of 0.035 T/s.
The tunnel transitions are labeled by numbers given in Table L
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FIG. 4. Low lying energy states of two coupled spins S =
9/2, having the same anisotropy as in Fig. 1, as a function of
applied magnetic field [Eq. (2) with J = —0.01 K]. Arrows,
labeled 1 to 13, indicate the observed tunnel resonances given
in Table I. Note that most levels are almost degenerated due to
the weak exchange interaction.

coupled to many other SMMs which, in turn, are coupled

to many other SMMs. This represents a complicated
many-body problem leading to quantum processes in-
volving more than two SMMs. However, the more
SMMs that are involved, the lower is the probability for
occurrence. In the limit of small exchange couplings and
transverse terms, we therefore consider only processes
involving one or two SMMs. The mutual couplings be-
tween all SMMs should lead mainly to broadenings and
small shifts of the observed quantum steps.

We measured the interactions between molecules by
using relaxation measurements as a function of initial
magnetization and the hole digging method [17]. We
found a fine structure of three in the zero field resonance
that is due to the strongest nearest neighbor interactions of
about 0.036 T along the c¢ axis of the crystals. This
coincides with the shortest Mn-Mn separations of
0.8032 nm between two molecules along the ¢ axis, while
the shortest Mn-Mn separations perpendicular to the ¢
axis are 1.6925 nm. We cannot explain the value of 0.036 T
by taking into account only dipolar interactions, which
should not be larger than about 0.01 T. We believe there-
fore that small exchange interactions are responsible for
the observed value. Indeed, the SMMs are held together
by three H bonds C-H-O which are probably responsible
for the small exchange interactions.

We selected 13 level crossings (see Figs. 1-4 and
Table I) which we divide into different types and into
two regimes: (i) the very low-temperature regime (Fig. 2)
and (ii) the regime of small thermal activation to the first
activated energy levels (Fig. 3). In the former, we can
neglect any activation to excited states. Transition 1 cor-
responds to the ground state (GS) tunneling from
(—=9/2, =9/2) to (—=9/2,9/2), i.e., one of the two coupled
spins reverses. Transitions 8, 9, and 12 correspond to GS
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TABLE 1. The 13 tunnel transitions, which are labeled from 1
to 13 in Figs. 1-4, for two coupled SMMs with § = 9/2. Their
states are labeled by two quantum numbers (m;, m,), where
m; = —9/2, —7/2,...,9/2. For clarity, degenerate states such
as (m, m') and (m’, m) are not both listed. IS: initial state; FS:
final state; GS: ground state; ES: excited state; SSCR: spin-spin
cross relaxation.

n° IS FS Type
1 (=9/2,—9/2) (=9/2,9/2) GS-GS
2 (=9/2,5/2) (7/2,7/2) ES-SSCR
3 (=5/2,9/2) (7/2,7/2) ES-SSCR
4 (=9/2,5/2) (9/2,3/2) ES-SSCR
5 (=9/2, =17/2) (9/2, —5/2) ES-SSCR
6 (=9/2,7/2) 9/2,5/2) ES-SSCR
7 (=9/2, —9/2) (=7/2,9/2) SSCR
8 (=9/2,9/2) (7/2,9/2) GS-ES
9 (=9/2, —9/2) (=9/2,7/2) GS-ES
10 (=7/2,9/2) (7/2,7/2) ES-SSCR
1 (=9/2, —9/2) (=7/2,7/2) SSCR
12 (=9/2,9/2) (5/2,9/2) GS-ES
13 (=9/2,9/2) (7/2,7/2) SSCR

to excited state (ES) tunneling. These transitions are
identical to those of the single-spin model [Eq. (1)] with
the difference that the coupling to neighboring spins
leads to field shifts of about 0.036 T.

Transition 7 is a SSCR wherein a pair of SMMs tunnels
from the GS (—9/2, —9/2) to the ES (—7/2,9/2). That
means that this common tunnel transition reverses one of
the two spins, and the other makes a transition to an
excited state. This excited state is stable only for a short
time and relaxes to the GS (—9/2, 9/2). Transition 11 is
analogous but from the GS (—9/2, —9/2) to the ES
(=7/2,7/2). Transition 13 is again a SSCR but from the
GS (—9/2,9/2), that is where one spin is already re-
versed, to the ES (7/2,7/2).

Transitions 2—6 and 10 are excited state spin-spin cross
relaxations (ES-SSCR); that means they reverse from one
ES to another ES. For example, transition 10 corresponds
to tunneling from (—7/2,9/2) to (7/2,7/2).

The SSCR transitions can be seen as virtual phonon
transitions. Indeed, whenever there is a field where the
energy difference between lower lying energy states is
equal to that of higher lying states (see Fig. 1), a transition
involving two SMMs can occur provided that both spins
are coupled. The transverse terms of the coupling inter-
action produce a tunnel splitting between two coherently
coupled quantum states. When sweeping the field through
such a tunnel splitting, there is a Landau-Zener tunnel
probability of mutual spin flips: One molecule transfers
to a lower energy state, the other to a higher one. The
virtual phonon transition picture allows one to immedi-
ately locate possible SSCRs in the single-spin Zeeman
diagram (see Fig. 1). This method is therefore particularly
helpful for large spins where an exact diagonalization
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FIG. 5. Tunnel splitting as a function of transverse field for a
single molecule transition 1 (circles) and a spin-spin cross
relaxation transition 7 (squares). Inset: Enlargement of hyste-
resis loop measurements at three different transverse fields
showing the ES-SSCR transition 10.

of the Hamiltonian matrix of the coupled SMMs
is tedious.

We checked that all transitions 1-13 are sensitive to an
applied transverse field, which always increases the tun-
nel rate. The inset of Fig. 5 presents a typical example
showing the transverse field dependence of the ES-SSCR
transition 10. Figure 5 presents a measurement of the
tunnel splitting of transitions 1 and 7 using the Landau-
Zener method [8]. The parity of the involved wave func-
tion is established by the fact that transition 1 is very
sensitive to a transverse field (odd transition), whereas 7
depends only smoothly on the transverse field (even tran-
sition) [18]. Indeed, for transition 1 the change of the
total quantum number M = m; + m, is odd, whereas it is
even for 7.

We calculated all tunnel splittings by numerical diag-
onalization of Eq. (2) and found tunnel splittings of the
right order of magnitude. However, a quantitative com-
parison is not possible because of the unknown higher
order transverse terms [18]. Between transitions 1-13,
other avoided level crossings can be found (Fig. 4) that
require both SMMs to tunnel simultaneously. The corre-
sponding tunneling probability is very small and will be
discussed elsewhere.

In the low-temperature regime, the strongest observed
SSCR concerns the transitions 7 and 11. The question
arises whether such transitions also play a role in other
SMMs such as Feg and Mn;,. A diagonalization of the
spin Hamiltonian of such molecules shows clearly that
SSCR should occur also. However, it turns out that these
transitions are very close to the single-spin tunnel tran-
sitions and only broaden them. ES-SSCR should, however,
be observable and might be responsible for the fine struc-
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tures seen in experiments of Bokacheva et al. [20] on
Mn, and of Gaudin [21] and Wernsdorfer [22] on Feg.
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