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We have observed a superconductor-insulator transition in one-dimensional (1D) arrays of small
Josephson junctions by changing both the resistance RS of normal metal resistors shunting each junction
and the ratio of the Josephson coupling energy EJ to the charging energy EC. The phase boundary lies at
RS � RQ (RQ � h=4e2 � 6:45 k�) when EJ=EC is smaller than about unity. We discuss the obtained
phase diagram in terms of theoretical models of the dissipation-driven quantum phase transition, with
particular attention to differences from 2D arrays.
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been achieved, and that only for 2D arrays [8,9]. It is
predicted that the phase diagram at T � 0 depends
strongly on the dimensionality of the system; a larger

FIG. 1. A scanning electron micrograph of a 1D array with
shunt resistors and tunable Josephson couplings.
Quantum phase transitions have attracted considerable
attention in recent years because they are a key concept in
the study of electrical and magnetic properties of various
condensed matter systems [1]. The transitions occur at
zero temperature and are driven by quantum fluctuations,
the magnitude of which varies with a control parameter
such as pressure or magnetic field. Josephson junction
arrays show a typical example of this kind of transition.
The phases of superconducting order parameters of island
electrodes in the arrays can be regarded as XY spins,
where the Josephson coupling energy EJ represents the
coupling between the neighboring spins, and the charging
energy EC determines the strength of the quantum fluc-
tuations. A decrease in a control parameter EJ=EC
leads to a transition from an ordered to a quantum dis-
ordered state of the phases, which corresponds to a
superconductor-insulator (SI) transition of the array.

In contrast to real spin systems such as magnetic com-
pounds, the arrays can be fabricated with well-controlled
parameters of junctions and with the arrangement of
junctions designed at will. In addition, what is unique
about this system is that an SI transition is also predicted
to occur when the strength of coupling of the phases to a
dissipative environment is varied. According to the resis-
tively shunted-junction (RSJ) model, the classical dy-
namics of the phases are damped by dissipative forces
inversely proportional to the resistance RS of Ohmic
resistors shunting each junction. The dissipation in a
quantum mechanical description [2] damps the quantum
fluctuations of the phases, and exceeding a critical value it
leads to a superconducting (phase-ordered) state even
when EC is much larger than EJ [3–7]. The dissipation-
driven phase transition has been extensively investigated
theoretically. Only recently, however, have a quantitative
control of dissipation and an observation of the transition
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insulating region is expected for lower dimensions be-
cause of stronger quantum fluctuations [3–5].

In this Letter, we report the observation of a dissipation-
driven phase transition in 1D small-Josephson-junction
arrays. To control the strength of the dissipation, we put
resistors made of Cr close to and in parallel
with each Al=AlOx=Al junction. The ratio EJ=EC was
also tuned in situ. By electrical measurements at low
temperatures, the phase diagram of 1D arrays in an
EJ=EC-dissipation plane has been determined experimen-
tally for the first time. The quantitative control of the
relevant parameters enabled us to compare the obtained
phase diagram directly with theoretically predicted ones
and to observe differences from the results of 2D arrays.

The shunted junctions were fabricated using electron-
beam lithography and four-angle shadow evapo-
ration with a two-axis rotation stage. For details, see
Refs. [9,10]. Neighboring islands are actually connected
by two Josephson junctions forming a SQUID loop and
by the normal metal resistor (Fig. 1). The SQUID geome-
try enabled us to tune the effective Josephson coupling EJ
between adjacent islands by applying a perpendicular
magnetic field B: EJ � E0

Jj cos��BS=�0�j. Here, E0
J is

the Josephson coupling at zero magnetic field, S is the
effective area of the SQUID loop, and �0�� h=2e �
2:07� 10�15 Wb� is the flux quantum. We fabricated an
2002 The American Physical Society 197001-1
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unshunted array and three arrays with different lengths of
Cr strips (2–8 �m) simultaneously on one substrate to
obtain a set of arrays with nominally the same junction
parameters [11] but with different shunt resistances. We
fabricated two such groups (from now on referred to as A
and B) of arrays. All the arrays consist of 46 islands. Both
voltage probes and current probes for four-terminal mea-
surements were connected to the ends of the arrays. The
measurements were performed at temperatures down to
20 mK using a 3He-4He dilution refrigerator.

The parameters of the samples are listed in Table I. The
charging energy EC�� e2=2C� was determined by the
offset voltage in the normal-state IV characteristics. We
determine the junction tunnel resistance RJ by dividing
the resistance of the unshunted array at 4.2 K by the
number of junctions (�47). Assuming the arrays on a
substrate have the same values of RJ, we estimated the
shunt resistance RS using an equation RS � RJR4:2 K=
�RJ � R4:2 K�, where R4:2 K is the resistance per junction
of the shunted array at 4.2 K. The value of RS estimated in
this way is consistent with the resistance of the array at
the lowest temperature in the magnetic field correspond-
ing to EJ � 0, which supports the accuracy of the RS
estimation. The Josephson coupling energy E0

J was calcu-
lated by the Ambegaokar-Baratoff equation E0

J �
�RQ=RJ���=2�, where the � is the superconducting energy
gap of Al. Using a 3D capacitance extraction program
FASTCAP [12], we estimated the self-capacitance C0 (ca-
pacitance of each island to ground) to be 0.37 fF, giving
C=C0 � 4:6 for Group A and 6:1 for Group B. The peri-
odic modulation of EJ with applied magnetic field B was
confirmed by the oscillation of the zero-bias resistance R0

for all the arrays. The period �B of the oscillation
was �9:34	 0:08� � 10�4 T for Group A and �10:12	
0:11� � 10�4 T for Group B, which was consistent with
the designed patterns. From now on, we express the per-
pendicular magnetic field B by the frustration f � B=�B.

Figure 2(a) shows temperature dependence of the zero-
bias resistance for Group A arrays. The resistance was
measured at 10 �V rms (at 21 Hz) for the unshunted
array and 9 pA rms for the shunted arrays. The R0�T�
curves clearly show a crossover from insulating to super-
conducting behavior depending on the value of RS: The R0

of the unshunted array increases sharply with decreasing
temperature. As the value of RS is lowered, the increase in
R0 becomes less pronounced, and eventually the R0 of the
array with RS � 5:2 k� show a monotonic decrease with
decreasing temperature. As shown in Figs. 2(b) and 2(c),
TABLE I. Parameters of the eight arrays. The 1 means an
unshunted array.

RS RJ EC=kB E0
J=kB

(k�) (k�) (K) (K) E0
J=EC

A 1, 17, 11, 5.2 16 0.55 0.60 1.1
B 1, 15, 6.6, 4.1 6.2 0.41 1.7 4.2
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the current-voltage characteristics also change from
showing a Coulomb gap to showing the Josephson-
current-like behavior as the value of RS is decreased.

Figure 3 shows how the dV=dI � V curves of two
arrays in Group B change depending on f. The excitation
voltage was smaller than 2 �V rms. As shown in Fig. 3(a),
the curves for RS � 15 k� show a Josephson-current-
like behavior, namely, a lower resistance at smaller
bias, when f < 0:30. On the other hand, a peak (a higher
resistance at smaller bias) appears inside the Josephson-
current-like region when f exceeds about 0.30. This
means Coulomb blockade of Cooper pair tunneling sets
in. Since changing f from 0 to 1=2 corresponds to the
reduction of EJ from E0

J to 0, this is the SI transition
depending on the ratio EJ=EC. The unshunted array and
the array with RS � 6:6 k� in Group B also show the
transition. On the contrary, the array with RS � 4:1 k�
did not show the insulating behavior even when f ! 0:5,
as shown in Fig. 3(b). Thus, whether the SI transition due
to the ratio EJ=EC occurs depends on the values of RS.

Using the above results, we construct a phase diagram
in an EJ=EC � RQ=RS plane in the T � 0 limit, which
is shown in Fig. 4. Whether the array is insulating or
superconducting at T ! 0 is determined by whether the
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FIG. 2. (a) Temperature dependence of the zero-bias resis-
tance for Group A arrays at f � 0:00. The arrays have nomi-
nally the same junction tunnel resistance RJ � 16 k� and the
same ratio EJ=EC � 1:1. (b),(c) Current-voltage characteristics
for Group A arrays, measured at 25 mK and at f � 0:00.
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FIG. 3. Differential resistance dV=dI vs voltage V for two
arrays in Group B, measured at 20 mK and at several magnetic
fields; (a) RS � 15 k�, (b) RS � 4:1 k�.
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dV=dI � V curve at the lowest temperature has a
Coulomb-blockade peak or it has only a Josephson-
current-like structure. Each bar in the figure represents
the states of an array at various values of EJ which is
tuned by the applied magnetic field. The phase diagram
shows the phase boundary is located at RQ=RS �
0:98–1:2 for small EJ=EC. In a previous study [9], we
determined a phase diagram of resistively shunted 2D
arrays, in which the phase boundary was at RQ=RS � 0:5
for small EJ=EC. Both the results for 1D and 2D arrays
are explained consistently by the theories of the
dissipation-driven phase transition, which predict that
the critical value of RQ=RS for d-dimensional cubic arrays
is 1=d when EJ=EC ! 0 [3–5]. Another notable feature is
that the phase boundary of the 1D arrays near the
RQ=RS � 0 axis appears to be at one order of magnitude
larger value of EJ=EC than that (�0:6) of the 2D arrays
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FIG. 4. Phase diagram in the EJ=EC � RQ=RS plane in the
T � 0 limit. A change from white to black in the middle of a
bar corresponds to the SI transition depending on f, e.g., shown
in Fig. 3(a). The circles show the results of another experiment
in which we used unshunted junction arrays having no SQUID
geometry and, hence, having constant values of EJ.

197001-3
[9,13]. This is consistent with the intuitive expectation
that the system with lower dimension has a stronger
quantum fluctuation and, hence, a stronger tendency to
become insulating.

Quantitatively, however, theoretical models have pre-
dicted a still larger difference in the position of the phase
boundary between 1D and 2D arrays. According to the-
ories [3,6], 1D arrays should be insulating at RQ=RS < 1
and superconducting at RQ=RS > 1 regardless of the ratio
EJ=EC if the charging energy is associated only with the
junction capacitances. This is in marked contrast to 2D
arrays, the insulating state of which is predicted to appear
only in the lower-left corner of the phase diagram,
namely, at RQ=RS smaller than 0.5 and EJ=EC smaller
than order 10�1 [3,14]. Theoretical models taking into
account the self-capacitances predict that the insulating
region of 1D arrays is also limited to the small EJ=EC
region, with a critical point �EJ=EC�cr � 3:2C=C0 at
RQ=RS � 0 [7]. Figure 4 shows, however, that the phase
boundary on the RQ=RS � 0 axis appears to be at
EJ=EC � 4, which is smaller than the predicted limiting
value 3:2C=C0 � 20 for Group B. Experiments on 1D
unshunted arrays performed by other groups also show
the discrepancy in the position of the phase boundary
between theory and experiment: The phase boundaries
were reported to be at EJ=EC � 3:0 [15], 2:2 [16], and
3:5–4:2 [17]. These values are also smaller than the pre-
dicted limiting values, which is 1:1–1:4� 103 [18] for the
arrays of Ref. [16]. The shrinkage in the insulating region
may result from the limitation in voltage measurements
and/or the thermal fluctuation that would hinder the
observation of the Coulomb-blockade gap, as has been
suggested for single shunted junctions [19]. Incidentally,
combining our results with those of Refs. [15–17], we find
that the position of the phase boundary at RQ=RS � 0
does not depend very much on the value of C=C0.

It is predicted from the nature of the XY model that the
superconducting state (a vanishing zero-bias resistance)
of 1D arrays emerges only at zero temperature [3,5,7].
This is again in contrast to 2D arrays, the superconduct-
ing state of which could emerge at finite temperatures
below a critical temperature [14]. From this viewpoint,
it is interesting to explore how the 1D ‘‘superconducting’’
(meaning R0 � 0 at T � 0) arrays go into the R0 � 0
state as the temperature is decreased.

The dots in Fig. 5(a) show the temperature dependence
of zero-bias resistance R0 (actually, measured at 10 pA
rms) for the array with RS � 5:2 k� in Group A at four
different f. The data show approximate power-law be-
havior. The filled symbols in Fig. 5(b) show the power-law
exponent plotted as a function of EJ=EC [20]. An inter-
esting finding is that when the IV curve at the lowest
temperature is plotted in the form of V=I��� vs I �h=ekB
(K), the data fall on the R0�T� curve, as shown in Fig. 5(a).
These are partly explained by a theory considering quan-
tum phase slip for each junction, i.e., quantum tunneling
with dissipation in the tilted washboard potential [7,21]. It
197001-3
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FIG. 5. (a) Zero-bias resistance as a function of temperature
(dots) and V=I as a function of current at 26 mK (continuous
lines) for the array with RS � 5:2 k� in Group A. The current
is converted to temperature by the factor �h=ekB. (b) The power-
law exponents of the R0-T curves (filled symbols) and the
V=I-I �h=ekB curves (open symbols), plotted as a function of
EJ=EC. Circles and triangles represent the data points for the
array with RS � 5:2 k� in Group A and the array with RS �
4:1 k� in Group B, respectively.
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predicts that V=I (i.e., the phase mobility) depends alge-
braically on both temperature T and the current I (i.e., the
slope of the potential), namely, V=I / T��kBT � I �h=e�
and V=I / I��kBT � I �h=e�, where the exponents are the
same for both cases. This explains the same power-law
behavior for the R0 � T and V=I � I curves. Figure 5(b)
shows that the exponent becomes zero when EJ=EC ! 0,
corresponding to the fact that V=I hardly depends on T
and I at f � 0:50 as shown in Fig. 5(a). This is naturally
understood because at f � 1=2 the Josephson coupling
disappears and the electric properties of only shunt re-
sistors can be observed, i.e., V=I � 47RS. In Fig. 5(b)
one can also see that the exponent for RS � 5:2 k� does
not differ very much from that for RS � 4:1 k�. This
observation cannot be explained by the theory, which
predicts that � � 2�RQ=RS � 1� when EJ=EC ! 0, but
this may be because the expression is derived in the low
temperature limit: kBT � EC�EJ=EC�

RQ=�RQ�RS� [22].
Further work, in particular, in a larger RQ=RS regime,
will lead to a more detailed understanding of the finite
temperature dynamics.
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