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Quantum Monte Carlo Calculations of Nanostructure Optical Gaps:
Application to Silicon Quantum Dots
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Quantum Monte Carlo (QMC) calculations of the optical gaps of silicon quantum dots ranging in
size from 0 to 1.5 nm are presented. These QMC results are used to examine the accuracy of density
functional (DFT) and empirical pseudopotential based calculations. The GW approximation combined
with a solution of the Bethe-Salpeter equation performs well but is limited by its scaling with system
size. Optical gaps predicted by DFT vary by 1–2 eV depending on choice of functional. Corrections
introduced by the time dependent formalism are found to be minimal in these systems.
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In this paper we demonstrate the ability of near linear
scaling quantum Monte Carlo (QMC) calculations [10]

original function. A time step of 0.05 a.u. was used in all
DMC calculations.
Accurate prediction of the optical gaps of semiconduc-
tors represents one of the outstanding problems in the
rapidly growing field of nanoscience. A leading example
is the challenge of predicting the size dependence of the
optical gap of silicon quantum dots [1–9]. To date, pro-
ducing samples of pure, crystalline, monodispersed sili-
con quantum dots has proved immensely difficult. Given
this lack of consistent experimental data, it is highly
desirable to develop accurate theoretical models to assist
in the development of silicon based optoelectronic and
biological nanotechnologies. The theoretical challenge is
to develop a consistent description of the exchange and
correlation between electrons in systems ranging from
highly inhomogeneous molecules such as silane to large
clusters approaching the bulk limit.

In the 0–2 nm size range, silicon nanoparticles offer a
unique combination of technological applicability and
dramatic quantum confinement effects. Unfortunately,
it is precisely this size range where theoretical methods
encounter the greatest difficulty: For larger clusters
( > 500 atoms), the optical gap can be approximated by
calculating the quasiparticle gap using semiempirical
approaches and correcting for the relatively small (few
meV) exciton binding energy. However, in the 0–2 nm
size regime these approaches break down due to poor
descriptions of the cluster surface and excitonic binding
energy. Accurate electronic structure approaches based on
perturbation techniques such as coupled cluster and con-
figuration interaction, or the GW approximation com-
bined with a solution to the Bethe-Salpeter equation
(GW-BSE) [4], are unworkable as the system size in-
creases due to unfavorable scaling with number of par-
ticles. Finally, mean-field methods such as density
functional theory (DFT), which can be applied through-
out this size regime, rely on approximate exchange-
correlation functionals which are well known to yield
accurate ground state properties, but significantly under-
estimate optical gaps.
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to accurately predict the optical gap of silicon nano-
structures ranging in size from a few to several hundred
atoms. The QMC approach includes exchange and
correlation interactions between all the electrons in the
quantum dot in its ground state and also the inter-
action between the electron and hole forming the exciton
in an optically excited quantum dot. These calculations
provide the first benchmark of the size dependence of
the optical gap in silicon quantum dots and enable us
to analyze the accuracy of previous calculation ap-
proaches. We examine the approximations present in a
wide range of alternate approaches by performing both
DFT and empirical pseudopotential calculations. We find
significant differences between our QMC results and
previous high-level ab initio calculations, with the pre-
vious calculations proving more or less accurate in
different size regimes. Further, our calculations provide
predictive data in experimentally accessible size ranges
that can be directly compared with future optical
measurements.

Our DFT-LDA calculations were performed using the
JEEP [11] plane wave code with Hamman (silicon) and
Gianozzi (hydrogen) pseudopotentials and a 35 Ry cutoff.
The DFT calculations using the hybrid B3LYP functional
were performed using the GAUSSIAN 98 program [12]. The
QMC calculations were performed using recent develop-
ments [10] to the CASINO QMC code [13]. We use the fixed
node, diffusion Monte Carlo (DMC) implementation of
QMC [14] for all calculations, with a trial wave function
formed by a product of Slater determinants for up and
down spin electrons and a Jastrow correlation function
containing electron-electron and electron-nucleus terms.
The Slater determinants were formed from a set of trun-
cated, maximally localized Wannier (MLW) functions
[10,15], obtained by applying a unitary transform to the
single particle orbitals obtained from the initial DFT
calculation. The MLW functions were truncated beyond
a radius chosen to capture > 99:7% of the norm of the
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FIG. 1. Size dependence of optical gaps of silicon nanoclus-
ters, calculated using diffusion Monte Carlo (DMC), time
independent (LDA) and dependent (TD-LDA) DFT, semiem-
pirical tight binding, and pseudopotential approaches. DMC
statistical error bars are smaller than the symbols.
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We define the QMC optical gap, Eopt, as the difference
in total energies, Eopt � E� � EGS, where EGS and E� are
the total energies of the system in its ground and singlet
excited state electronic configurations. In our QMC
calculations E� is formed by replacing the highest
occupied molecular orbital (HOMO) with the lowest
unoccupied molecular orbital (LUMO) in the Slater
determinant of the up spin electrons [16]. The unitary
transform used to obtain the MLW orbitals is performed
on all the N occupied DFT orbitals except the HOMO
and LUMO which remain as the original LDA orbitals.
Using these same N � 1 transformed occupied orbitals
to construct both the up and down spin determinants
in both the ground state and excited state calculations
halves the memory requirements of the calculations.
The DMC energy obtained from this trial wave func-
tion corresponds to the lowest energy of a system
with the nodes of these Slater determinants [17]. This
approach to calculating the optical gap has previously
been shown to be an accurate predictor of the true opti-
cal gap in both the molecular [18–20] and bulk [21]
silicon limits. The optical gap, Eopt, associated with
this singlet excitation corresponds to the onset of opti-
cal absorption in the dot, or the photoluminescence (PL)
energy. In multiconfiguration language, it corresponds to
the energy required to excite the dot from the ground
state into the state with a dominant contribution from
the determinant representing a HOMO-LUMO singlet
excitation. In all the dots studied here, the HOMO-
LUMO dipole matrix elements indicate an allowed tran-
sition, and therefore we believe this is the appropriate
excitation to consider.

In Fig. 1 we compare our DMC calculated optical gaps
with those obtained from a range of other theoretical
approaches. Previous calculations have also chosen to
compare optical gaps with a variety of experimentally
measured values. However, due to the wide spread in
measured values we choose to focus here on comparisons
between different theoretical techniques. For consistency,
the atomic geometries used for the DMC, LDA, B3LYP,
TD-LDA, TD-B3LYP, and empirical pseudopotential cal-
culations performed in this work were identical and were
obtained by relaxing the structure within LDA. Any
differences with the structures used for the GW-BSE
[4], LDA [3], and tight-binding [6] calculations are ex-
pected to be small.

In Fig. 1 we observe that in the large size regime
( > 2 nm, > 250 atoms) semiempirical tight-binding
and pseudopotential approaches agree well with one an-
other. As expected, the semiempirical methods under-
estimate the optical gap of small clusters where the
surface plays a dominant role. Figure 1 also shows our
LDA calculated gaps. Both the single particle HOMO-
LUMO gap (LDA) and the optical gap calculated using
the time dependent formalism [22] (TD-LDA) are shown.
As one would expect, the LDA gaps are too low compared
with DMC for the entire size range. Interestingly, TD-
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LDA [see Fig. 2(a)] offers only a minimal improvement
over single particle LDA.

Figure 2(a) plots the difference between the optical gap
computed with DMC and calculations based on the LDA
functional: (i) single particle gaps (our calculations),
(ii) optical gaps constructed [3] by subtracting an empiri-
cal electron-hole exciton binding energy from the LDA
quasiparticle gap and then corrected to include the
electron-hole polarization energy [7,23], (iii) TD-LDA
calculations from Ref. [8], (iv) TD-LDA calculations to
be published in Ref. [24], and (v) GW-BSE calculations
which add a perturbative correction to an LDA calcula-
tion. Comparing DMC with curve (v) shows that the
excellent agreement between the optical gaps calculated
using GW-BSE and QMC for silane [18] extends to all
the sizes that are accessible to GW-BSE (1–14 atoms).
Comparing curves (i) and (ii) we observe that the LDA
gaps and the corrected quasiparticle gaps of Ref. [3] are in
quite good agreement. This agreement is likely due to a
fortuitous partial cancellation of the quasiparticle cor-
rection and exciton binding energy present in curve (ii)
and omitted in curve (i) (both of which are several eV).
Both methods, however, underestimate the optical gap by
1–2 eV for these sizes.

When comparing QMC calculated optical gaps with
the optical spectra predicted by TD-LDA, it is important
to use a consistent definition of the optical gap.
Curves (iii) and (iv) in Fig. 2(a) are obtained from very
similar TD-LDA calculations. However, while the calcu-
lations agree on the optical gap of silane, they disagree
considerably for larger clusters. This disagreement is due
to a difference in the definition of the optical gap in the
two calculations. In Ref. [8] [curve (iii)] the optical gap is
defined as the point at which the integrated oscillator
strength exceeds a threshold of 10�4. As stated above,
196803-2
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for the purposes of this work [DMC and curve (iv)] we
have chosen to define the optical gap as the value of the
first nonzero (dipole allowed) transition as we believe this
enables the closest comparison between different theo-
retical approaches. This definition corresponds to the
emission (PL) energy [25]. In silane, the first excitation
peak already exceeds the threshold required in Ref. [8]
and so the optical gaps agree. For the larger clusters, the
integration threshold of Ref. [8] is exceeded only after
integrating over several small peaks in the absorption
spectra, and therefore in Ref. [8] the optical gap is defined
to be larger than our value based on the PL energy. When
we compare the TD-LDA calculations in curve (iv) with
our DMC calculations, we observe a consistent under-
estimate of the optical gap of 1–2 eV within TD-LDA
[24]. In fact, with the exception of silane the blue shift of
the optical gap introduced by TD-LDAwith respect to the
LDA gap is typically only 0.2 eV. Previous works have
demonstrated that in the bulk limit the value of the
optical gap predicted by LDA and TD-LDA approach
the same value. Here, somewhat surprisingly, our results
indicate that even for small clusters TD-LDA does not
offer a significant improvement over LDA.
 O
pt

ic
al

 G
ap

 (
D

iff
er

en
ce

 fr
om

 D
M

C
) 

(e
V

)

-2

-1

0

1

2

Number of silicon atoms

1 2 5 10 17 29 35 66 87

(i) LDA HOMO-LUMO
(ii) LDA QP-Coul, Ref [3,7,25]
(iii) TD-LDA, Ref [8]
(iv) TD-LDA, Ref [26]
(v) GW-BSE, Ref [4]

-2

-1

0

1

2

Diameter (nm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(i) B3LYP HOMO-LUMO, Ref [9]
(ii) TD-B3LYP, Ref [9]
(iii) B3LYP HOMO-LUMO
(iv) TD-B3LYP

(a) Comparison with LDA Based Calculations

(b) Comparison with B3LYP Based Calculations

FIG. 2. Deviation of the optical gap predicted by density
functional calculations based on the (a) LDA functional and
(b) B3LYP hybrid functional from the DMC optical gap.
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In Fig. 2(b) we plot the difference between the optical
gap calculated in DMC with calculations based on the
hybrid B3LYP functional [27]. Previous B3LYP calcula-
tions [curves (i) and (ii)] [9] disagree with our results
[curves (iii) and (iv)] for clusters <1 nm due to the use of
a smaller basis [28] in Ref. [9]. In our calculations, we
employed a large 6-311��G�2d; 2p� Gaussian basis
to ensure convergence of the gaps to within 0.05 eV.
Comparing the results of our converged B3LYP calcula-
tions [curves (iii) and (iv)] with DMC results, we observe
that the single particle B3LYP gap is generally in good
agreement with our DMC values for the optical gap. The
size dependence of the B3LYP gap is stronger than that of
the DMC results, and hence the B3LYP gap tends to
overestimate the optical gaps of the smallest and under-
estimate the optical gaps of the largest clusters. It is not
surprising that the B3LYP gap is in reasonable agreement
with the DMC values for the optical gap of silane and
Si2H6 as these molecules were part of the original set of
molecules used to parametrize the exact exchange com-
ponent of the functional [27]. The B3LYP functional has
also recently been shown to predict accurate values for the
optical gaps of bulk silicon [29]. However, we believe that
this is the first work to assess the accuracy of the B3LYP
functional for clusters throughout the crossover size re-
gime from small molecules to bulk solids.

In Ref. [9] the B3LYP functional is also used to per-
form time dependent density functional calculations
(TD-B3LYP). Previous calculations for atoms and mole-
cules [22] have shown that while TD-LDA calculations
typically yield gaps that are slightly blueshifted with
respect to the single particle gap, time dependent HF cal-
culations yield gaps that are significantly redshifted with
respect to the single particle gap. One might therefore
expect that, as the B3LYP functional contains a compo-
nent of exact exchange, TD-B3LYP gaps would be red-
shifted with respect to the B3LYP gap, and this is
confirmed both in Ref. [9] and by our calculations. For
all sizes of clusters, the agreement between the TD-
B3LYP optical gaps and the DMC optical gaps is worse
than the agreement between B3LYP single particle gaps
and DMC. This result is not surprising because one of the
criteria used to fit the parametrization of this functional
was that the single particle ionization potential (a quan-
tity related to the quasiparticle gap) should reproduce the
experimental value. The redshift of the gap introduced by
the time dependent formalism was not accounted for in
the original parametrization, and therefore the optical
gaps are too small.

When examining the density functional results from
Figs. 2(a) and 2(b), one should bear in mind that the
optical gap is intrinsically a many-body quantity, includ-
ing the interaction between all electrons in the system
with the exciton created by the absorption of a photon.
QMC calculations are, by construction, many-body cal-
culations and can therefore capture these interactions. The
Bethe-Salpeter equation, which describes the exciton as a
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linear combination of two-particle electron-hole pairs
has been shown to accurately describe the binding energy
of the exciton. In contrast, conventional DFT HOMO-
LUMO gaps are purely single particle quantities. Of
course, it is always possible to construct a functional
which cancels the errors in the single particle LDA and
HF gaps to yield a single particle gap in perfect agreement
with the true optical gap for one particular size of cluster.
However, the different size scalings of the quasiparticle
gap and the exciton binding energy suggest that such a
cancellation could not persist over a large size range. Such
an argument underscores the surprising quality of the
optical gaps predicted by the intrinsically single particle
B3LYP gap.

However, we have also recently applied B3LYP to
isoelectronic germanium clusters and silicon clusters
with reconstructed surfaces and found significantly larger
discrepancies when compared to QMC calculations [30].
A deeper understanding of these results requires an
analysis of the quasiparticle and exciton binding energies
predicted by QMC, which we relegate to a future
publication.

In conclusion, we have performed the first QMC cal-
culations of the optical gap of silicon quantum dots rang-
ing in size from 0 to 1.5 nm. This size range is large
enough to connect small clusters at the molecular limit
with those approaching the bulk limit. These calculations
demonstrate the applicability of the QMC approach to this
central problem in modern nanoscience. Further, this
QMC approach applies equally well to alternative mate-
rial types such as germanium and cadmium selenide and
to both crystalline and amorphous structures. By compar-
ing with several alternative theoretical approaches we
predict that for clusters > 3 nm in size, semiempirical
approaches are sufficient to accurately describe the size
dependence of the optical gap. For clusters <2 nm there is
a wide spread in the optical gaps predicted by different
approaches. The optical gaps predicted by DFT calcula-
tions, based on the LDA functional tend to underestimate
the optical gap, whereas, at least for silicon, the single
particle gaps predicted by DFT calculations using the
B3LYP functional are in good agreement with our DMC
optical gap calculations. However, time dependent cor-
rections to this functional uniformly degrade the quality
of the results.

We are grateful to L. Benedict and F. Reboredo for
useful conversations. The larger QMC calculations were
performed at NERSC. This work was performed under
the auspices of the U.S. Department of Energy by the
University of California, Lawrence Livermore National
Laboratory, under Contract No. W-7405-Eng-48.
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