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Extremal Model for Amorphous Media Plasticity
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An extremal model for the plasticity of amorphous materials is studied in a simple two-dimensional
antiplane geometry. The steady state is analyzed through numerical simulations. Long-range spatial and
temporal correlations in local slip events are shown to develop, leading to nontrivial and highly
anisotropic scaling laws. In particular, the plastic strain is shown to concentrate statistically over a
region which tends to align perpendicular to the displacement gradient. By construction, the model can
be seen as giving rise to a depinning transition, the threshold of which (i.e., the macroscopic yield stress)
also reveals scaling properties reflecting the localization of the activity.
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It is worth noting that the observation of nontrivial
structures in plasticity has been the focus of a number of

to �ij � �ij � �uklG�xij � xkl�. Since the elastic modu-
lus is uniform, the Green function G is computed once
In contrast with crystalline solids, amorphous mate-
rials display a plasticity which cannot be attributed to the
motion of well identified defects such as dislocations.
Consequently, the microscopic description of amorphous
plasticity still lacks a consistent framework. Recent stud-
ies [1–4] have focused on the fact that global plastic
deformation is mostly due to local rearrangements.
Starting from a molecular dynamics study of a bidimen-
sional Lennard-Jones glass and measurements of the
mechanical response under shear stress, Falk and
Langer [1] introduced ‘‘shear transformation zones’’ hav-
ing a bistable character to build a mean field theory of
plastic deformation in an amorphous material. Initially
applied by Bulatov and Argon [2–4] for amorphous solid
materials, this approach can be extended to granular
materials or dense suspensions [5,6].

In the following, we study a minimal model of plastic
deformations in disordered media. This model was
proposed in the early 1980s to describe the fault self-
organization in seismic regions [7,8]. The ‘‘avalanche’’
properties of this model were studied in order to compare
with the observed power-law distribution of seismic
events (Gutenberg-Richter law). We show in the following
that this very simple model reproduces the main features
of plasticity in amorphous materials. The analysis we
propose focuses on the scaling properties of the spatio-
temporal organization of the local slip events and on the
stress-strain characterization. We see that elementary slip
events proceed through bursts of spatially localized ac-
tivity, with a self-affine structure, forming bands at large
scales. These bursts have a direct signature on the statis-
tical distribution of macroscopic yield stress, which fluc-
tuates in time. Part of this distribution [close to the
maximum (over time) yield stress] displays a critical
behavior characterized by a critical exponent (indepen-
dent of the heterogeneity introduced in the model). The
latter distribution rules the statistics of the noise (ava-
lanches) which may be observed during plastic flow.
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works based on very different approaches. At the micro-
scopic scale, the patterning of dislocations in bands has
been modeled by Selinger et al. [9]. Miguel et al. [10]
studied the self-organization of dislocations during sec-
ondary creep. At a macroscopic level, Poliakov et al.
[11,12] considered the patterning of slip bands of a solid
obeying nonassociated plasticity under dynamic loading.
However, for quasistatic loadings (or associated plastic-
ity), most of the complexity of the plastic strain field
vanishes. None of these approaches can be directly com-
pared with the present study, in the sense that we resort to
the microscopic scale and do not postulate any specific
constitutive law (although one emerges naturally from
our model) and that we do not build our description on
dislocation dynamics.

We consider a bidimensional material submitted to
antiplane shear stress. The only nonzero component of
the displacement field uz�x; y� is along the z axis and it
depends only on the plane coordinates. The material is
discretized on a regular square lattice, the axes of which
are oriented at 45� from the displacement gradient direc-
tion. Biperiodic boundary conditions are implemented for
the stress and the strain. Hence, the displacement field
uz�x; y� obeys uz�x; y� pL� � uz�x; y� � p"yzL for any
integer p, where L is the system size and "yz the imposed
shear strain.

The medium is supposed to behave elastically (with a
uniform shear modulus) up to a maximum shear stress,
	ij, characterizing the yield limit of the interface be-
tween neighboring elements i and j. These local thresh-
olds are randomly chosen from a uniform distribution
between 0 and 1. Past the threshold, the interface is
allowed to slip irreversibly along this specific interface
by a random amount, �uij. This displacement disconti-
nuity gives rise to a new stress state in the entire medium
computed using its elastic behavior. The local stress on an
interface ij is �ij � �� �oij where � is the macroscopic
stress. After a slip �ukl at the interface kl, �oi is adjusted
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FIG. 1. Evolution of the mean yield threshold h	i versus the
plastic strain h"pi during the transient regime of a first loading
process. The increase of h	i can be interpreted as a hardening
effect.

VOLUME 89, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 4 NOVEMBER 2002
and for all via a conjugated gradient algorithm for a unit
slip at a reference interface. It is then simply translated to
the location of the slip event. Apart from the periodicity
imposed by the boundary conditions, this functionG�x� is
long ranged, decreasing asG�x� / jxj�2. Moreover, due to
the shear boundary condition, the stress redistribution is
anisotropic. In the longitudinal x direction, interfaces are
loaded, while in the transverse y direction, they are un-
loaded. This anisotropy is one distinct feature of the
model leading to the localization effect described below.
Simultaneously, this slip is assumed to modify the local
environment of the medium, and, hence, its limit stress is
modified. A new threshold stress is thus chosen from the
same distribution.

We choose an extremal dynamics: the external load is
adjusted at each time step so that only one interface shear
stress reaches its threshold. In terms of the global stress-
strain characteristics of the system, one leaves an elastic
branch to jump on another elastic branch of the same
slope (the elastic modulus is uniform and is unchanged
by the local slip) but whose origin has been shifted
of �uij=L.

The behavior of this model is of the pinning/depinning
type. The yield criterion of an individual interface ij can
be written �ext > 	ij � �el

ij, where �ext is the external
shear stress, 	ij the local yield threshold, and �el

ij the
local stress component due to elastic stress redistribution
from previous yield events. Following an extremal dy-
namics, we select at time t the current ‘‘weakest inter-
face’’ i	 such that �c�t� � 	ij	 � �el

ij	 � minij
	ij � �el
ij�.

The current elastic limit �c�t� is a fluctuating quantity. Its
maximum over time �	 � maxt �c�t� corresponds to the
macroscopic yield stress. From this signal, we can recon-
struct the evolution of the system subjected to a constant
load: when submitted to an external shear stress lower
than�	, the plate deforms plastically before blocking in a
jammed state. For values above the yield stress, the sys-
tem flows indefinitely. Such pinning systems have been
extensively studied over the recent years. They have been
used to describe front motion in a disordered environment
in the context of wetting [13], magnetic domain walls
[14], fluid invasion in porous media [15], crack propaga-
tion [16–18]; or the behavior of ‘‘periodic systems,’’ e.g.,
vortex lattices [19] or charge density waves [20].

Beyond the yielding transition, this simple model ex-
hibits another characteristic feature of plasticity: harden-
ing (i.e., increase of the yield stress with the plastic
strain). In crystalline solids, the hardening behavior is
due to the entanglement or trapping on defects of dislo-
cation loops. In the present case, after a first loading, we
observe an increase of the elastic limit. However, the
mechanism for this hardening effect is here of a pure
statistical nature. During the loading process, the weakest
sites are progressively decimated. Then the corresponding
yield thresholds 	ij are renewed. The new thresholds are
in average larger than the previous ones. This introduces a
systematical bias. When submitted for the first time to a
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loading process, the distribution of these local yield
thresholds evolves to eventually reach a stationary state.
In Fig. 1, we show the evolution of the mean yield thresh-
old h	iji during loading. The asymptotic steady distribu-
tion seems not reached yet in the figure. This hardening
effect thus corresponds to a progressive reinforcement of
the weakest regions.

In Fig. 2 (top) we show a map of the cumulative plastic
strain for a system of size 128� 64 after 8� 105 time
steps. We see clearly that the plastic strain is nonuniform:
it is localized within regions elongated along the x direc-
tion. Focusing on the plastic deformation taking place
within a finite time window, we show in the same figure
(bottom) the appearance of an individual localized struc-
ture. To characterize quantitatively this spatial distribu-
tion, we studied the pair correlation function of the
plastic strain "p�x; y� through Fourier transforms of the
strain map averaged over time. We found that the projec-
tion of the plastic strain along the x or y axis, "k�x� �
h"p�x; y�iy and "?�y� � h"p�x; y�ix, are self-affine profiles
with roughness exponents �k � �0:09 and �? � 0:50.
Figure 3 shows the power spectra of "p for kx � 0 and
ky � 0, where the power-law behaviors jkj�1�2� give
directly the cited roughness exponents.

Such a scaling behavior which characterizes the
steady-state fluctuations of the cumulative strain allows
one to analyze the time evolution of the plastic flow. Let
us consider two local slip events separated by a time lapse
� and record their distance along the x and y directions,
noted respectively as dk and d?. Averaging over time (at
fixed �), the probability distribution function of these
distances p�d; �� reveal two characteristic ‘‘correlation
lengths,’’ �k and �?, below which p is constant, and
above which p decays as a power law with an exponent
�k or �?, respectively. Varying the time lapse �, we
observe that
195506-2
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FIG. 3. Power spectra of the plastic strain "p for kx � 0
(circles) and ky � 0 (squares). The lines indicate power-law
behaviors corresponding to roughness exponents �k � �0:09
and �? � 0:50.
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FIG. 2 (color online). Map of the relative displacement field
obtained on a system 128� 64 after 800 000 time steps (top).
The diffuse localization corresponds to the successive develop-
ment of anisotropic structures elongated in the longitudinal
direction. Focusing on a finite time window (450 time steps,
bottom) allows one to reveal an individual structure.
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�k��� / �1=zk ; �?��� / �1=z? : (1)

Exploiting the self-affine nature of the cumulative plastic
strain, and using a result obtained for other extremal
models of depinning, we can relate the two dynamic
exponents to the roughness exponents [21]. During a
time lapse �, most of the activity takes place in a region
of extension �, the difference between the front and time
t, and t� � is a self-affine region of lateral extension � of
typical width �� and of area �. The equality � � �� � �
leads to

zk � 1� �k; z? � 1� �?: (2)

The numerical values of the z exponents are consistent
with these identities.

The difference in scaling in the x and y directions can
be accounted for through a power law relating to both
directions. Indeed, the correlation lengths are related
through �? / ��

k
with � � zk=z? � 0:65. Moreover,

looking at the mean value of d? for a prescribed value
of dk also reveals the same power law d? / d�

k
,

with � � 0:65.
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Let us focus now on the depinning stress distribution.
Prior to a large jump in the location of the slip event, the
lattice has reached a state of strong pinning. Hence,
following the analysis presented in Ref. [22], if we con-
dition the statistical distribution of �c�t� by the distance
to the location of the next slip event, along the x direction
for instance, �x, we observe that the larger �x, the
narrower the distribution and the closer its mean to the
yield stress �	. These distributions are shown in Fig. 4.
Motivated by the underlying criticality of the depinning
transition, we may anticipate a scaling form of the dis-
tribution as

p��c j �x� � �x�k 
��	 � �c��x
�k �: (3)

This particular form implies that the standard devia-
tion of the distribution ��c vanishes as ��x���k and that
the mean value of h�	 � �ci��x� is simply proportional
to ��c��x�. The first property allows one to determine �k
and the second gives a simple way to estimate precisely
�	 through a simple linear regression. The same proce-
dure applied to �y gives a similar result. Using the linear
dependence of ��c on �c conditioned to the size of the
activity jump in both the x and y directions, we find
numerically �	 � 0:517 for a uniform distribution of
threshold 	 in 
0; 1� and a random slip amplitude from
the same distribution.

The scaling of the standard deviation of the distribu-
tion versus the jump size gives a determination of the
exponents �k � 0:68 and �? � 0:98. We note that again
the ratio of these exponents gives the anisotropy scaling
� � �k=�? � 0:69 in good agreement with the previous
determinations (� � 0:65).

The knowledge of the distribution p�d� / d��k of the x
distances between successive active sites allows one
to express the depinning stress distribution close to
195506-3



TABLE I. Table of scaling exponents.

�k � �0:09� 0:10 �? � 0:50� 0:05
�k � 1:61� 0:10 �? � 1:96� 0:10
�k � 0:68� 0:05 �? � 0:98� 0:05
� � 0:00� 0:10 � � 0:65� 0:05
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FIG. 4. Distribution of depinning stress (bold line) and con-
tributions conditioned by the distances (2, 4, 8, 16, 32) between
consecutive active sites. The tail of the distribution corresponds
to very short jumps and is very sensitive to the details of the
random threshold distribution. The contributions obtained for
increasing distances between consecutive active sites present
the same trend: the larger the jump, the closer the mean force
to the threshold and the narrower the distribution. After
rescaling (inset) these distributions collapse onto a single
master curve.
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threshold:

Q��	 � �c� �
Z
x�k��k 

�
�	 � �c
x��k

�
dx / ��	 � �c��;

where � � ��k � �k � 1�=�k. The same argument
obviously also holds for the y direction. This latter
scaling is also consistent with the anisotropy scaling
� � ��k � 1�=��? � 1� � 0:64.

Despite its extreme simplicity, the model that we
present accounts for several features of plasticity in amor-
phous materials. We could identify a macroscopic yield
stress. Below this threshold, the material deforms elasti-
cally before blocking in a jammed state. Above, it can
flow indefinitely. This behavior is typical of a pinning/
depinning situation. In the same spirit as the study pre-
sented in Ref. [22], the model exhibits a critical behavior
of the plastic stress close to the macroscopic yield stress.
When submitted for the first time to a shear stress, we
observe a hardening effect. In contrast with crystalline
materials, here this effect is of a pure statistical nature
and corresponds to a progressive reinforcement of the
weakest regions. In addition to this global hardening
plastic behavior, the model exhibits a statistical local-
ization. The latter appears via elongated structures in the
shear direction. However, instead of concentrating on a
unique structure (such as in Ref. [8]), the plastic strain
develops a complex spatiotemporal organization. A
statistical analysis of these patterns reveals scaling prop-
erties; scaling exponents are summarized in Table I.
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Beyond this simplified model, the introduction of ther-
mal activation in the selection of the site to plastify
should allow one to account for viscoplastic effects.
Another improvement of such models would consist in
including both deviatoric and volumetric strain, the latter
coupling being characteristic of irreversible deformation
in amorphous solids.
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