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Rearrangements and Dilatancy for Sheared Dense Materials
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Constitutive equations are proposed for dense materials, based on the identification of two types of
free-volume activated rearrangements associated with shear and compaction. Two situations are
studied: the case of an amorphous solid in a stress-strain test, and the case of a lubricant in tribology
test. Varying parameters, strain softening, shear thinning, and stick-slip motion can be observed.
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tion and to compaction/dilatancy. Macroscopic deforma-
tion is controlled by the interplay between those two

although an actual rearrangement involves in general
more than four grains. Populations (number densities)
From food to beauty products, from our bone joints to
the gouge of tectonic faults, the dynamical properties of
dense materials determine important and ubiquitous phe-
nomena that govern our life. The idea emerged recently
that some sort of universality might be at work in struc-
tural systems, ranging from glasses to granular materials
[1]. This assumption infers that a main structure of con-
stitutive equations should hold for a wide class of dense
materials and should not depend on the details of inter-
actions between their microscopic constituents. In this
Letter, I hypothesize that universality results from the
crucial role played by structural rearrangements. I show
how constitutive equations derive from the identification
of mesoscopic observables and excluded-volume effects.

The approach I propose relies on the so-called shear
transformation zone (STZ) theory, introduced to study
elastoplastic transitions in amorphous solids [2]. STZ
theory provides a general scheme for rearrangement ki-
netics in a dense material: macroscopic deformation re-
sults from local free-volume activated rearrangements at
a mesoscopic scale; local states are introduced, related to
orientations of the contact network; mean-field equations
of motion for those local states lead to macroscopic con-
stitutive equations. STZ theory was originally designed
for solids, but it has been shown recently that it could
successfully account for the rheology of granular flows
[3]. It is shown here that supplementing STZ theory with
free-volume kinetics permits one to account for impor-
tant features of both amorphous solids (strain softening)
and confined liquids (stick slip).

In previous works on STZ theory, free volume appears
as a parameter. It is, however, a state variable, related to
the particle density � of the material as vf � 1=��
1=�rcp, where �rcp is the density of random closed pack-
ing. Free-volume kinetics is inspired by recent works on
granular materials submitted to vertical tapping, in which
local rearrangements are shown to account for logarith-
mic density relaxation [4]. The microstructural picture I
propose for dense materials thus involves two types of
rearrangements associated, respectively, with shear mo-
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mesoscopic processes and associated time scales. To em-
phasize the analogy between solids and confined liquids,
two important experimental tests are considered: a stress-
strain test performed on a plastic material [5] and an
overdamped tribology test where a lubricant or a granular
material is sheared [6–8]. In the former case, the resulting
constitutive equations are shown to account for strain
softening; in the latter, they account for a transition
between steady sliding and stick-slip motion. The picture
is completed with the study of constant stress experiments
(creep tests).

Let me now present a scheme for rearrangement ki-
netics, along the lines of STZ theory [2]. The present
approach remains at a mean-field level. The overall shear
deformation is denoted � and decomposed into an elastic
and a plastic part: � � �el � �pl. The elastic deformation
is proportional to the shear stress � � ��el; the plastic
deformation results from local, irreversible transforma-
tions of the contact network. A local rearrangement in-
volves several molecules at a mesoscopic level. A shear
transformation zone is defined as a locus within the
material where an elementary shear is made possible by
the local conformation of neighboring molecules. An
essential remark that lies at the root of STZ theory is
that, once a rearrangement has occurred, some contacts
break, some others are formed, and the molecules in-
volved cannot shear further in the same ‘‘direction,’’
although they might shear backward. This leads to iden-
tifying pairs of types of arrangements that are trans-
formed into one another by a local, elementary shear.
To simplify the theory, one pair of orientations is consid-
ered, corresponding to the principal axes of the stress
tensor. An elementary transformation can be sketched as
follows:

R+

R−
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of arrangements of each type are denoted n�; the rates R�

at which a � ! � transformation occurs depend on force
and free-volume fluctuations and will be defined further.
The macroscopic plastic shear is evaluated from the bal-
ance between both types of elementary motion:

_��pl � A0�R�n� � R�n��; (1)

where some constant A0 has been introduced. Equation
(1) is supplemented by equations of motion for the popu-
lations n� [2]:

_nn� � R�n� � R�n� � j� _��plj�Ac �Aan��: (2)

Ac and Aa are constants. The first two terms on the
right-hand side (rhs) account for the internal reconfor-
mations of STZ’s, while the last term introduces a cou-
pling with the mean flow. At the macroscopic scale, the
flow constantly stirs the molecules, thus creating and
destroying local configurations. The rate at which the
macroscopic flow induces new configurations is estimated
as the ratio of the overall work, � _��pl, over some (con-
stant) typical normal force (the force required to modify
a contact). An absolute value is used here only for tech-
nical reasons: to exclude spurious nonphysical solutions
which might result from creation and destruction terms in
the case � _��pl < 0. In all cases studied, the physical do-
main � _��pl > 0 is invariant under the overall dynamics.

Transformation rates R� depend on volume and force
fluctuations: a local reconformation may occur if some
volume is available, and if the local force network is
appropriately oriented. In this work, I assume that the
probabilities associated with those two types of fluctua-
tions factorize R� � Rv�vf�R

�
���� (which differs from

the prescription given in [2]). v0 denotes the typical free-
volume excess that permits a rearrangement. A Poisson
distribution is assumed for the sizes of voids in the
material. The probability that a fluctuation of free volume
larger than v0 occurs at a given point is thus Rv /
exp��v0=vf�. Shear stress � introduces a bias of the force
network. The probability that some fluctuation of local
forces promotes shearing in the � ! � direction is a
positive and increasing function of �. Large forces are
distributed exponentially in granular systems [1,9]; it is
reasonable to expect R�

� / exp���= 
���, where 
�� mea-
sures some typical force of the stress network. In the
following, 
�� � 1 is imposed, which fixes the unit of
forces. The rates are thus written

R� � R0 exp��v0=vf� exp����;

with R0, the update frequency of microscopic processes.
Other choices for the rates R� lead to similar results [10].

This picture is now complemented with free-volume
kinetics. In analogy with Eq. (2), it results from a com-
petition between local reconformations of molecules into
better packings [4], and the creation of new, random
arrangements by the mean flow:
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_vvf � �E1 exp��v1=vf� �Avj� _��plj: (3)

The first term on the rhs accounts for local optimization
of packings, at a rate exp��v1=vf�; v1 is introduced as
the typical free-volume fluctuation required for a local
collapse. (Relative values of v1 and v0 are expected to
be related to the shape of the molecules constituting the
material.) The second term on the rhs accounts for the fact
that the mean flow creates new, unoptimized, hence loose,
configurations. Dilatancy results by definition: random
loose packing is less dense than random close packing.
The average dilatancy �vf resulting from a macroscopic
shear ��pl is estimated by considering that a fraction of
the energy ���pl is transformed into P�vf by a levering
effect within the contact network: �vf / ���pl=P. In the
following, pressure dependence is incorporated in con-
stants, P � 1, and Av � 1 is imposed, which fixes the
unit of vf. Note that in the absence of shear (� � 0) the
residual equation, _vvf � �E1 exp��v1=vf�, has been pro-
posed by several authors to account for the logarithmic
relaxation of vf [4].

Before proceeding, Eqs. (1) and (2) are written in a
more appealing form. Following [2], variables

� �
n� � n�

n1
and � �

n� � n�
n1

are introduced and the parameters n1 � 2Ac=Aa, �0 �
A0Ac=Aa, � � A0Ac, and E0 � 2�0R0. It comes

_��pl � E0 exp��v0=vf���sinh��� ��cosh����; (4)

_�� �
1

�0
� _��pl � �j� _��plj��; (5)

_�� �
1

�0
�j� _��plj�1���: (6)

Variables � and � represent, respectively, the total
normalized density of STZ’s and the bias between the
populations n�. In the absence of shear motion, the dy-
namics of � and � freeze, while vf undergoes ‘‘autono-
mous’’ relaxation. Initial values for those variables
account for the preparation of the system.

In the absence of shear, � � 0, the system undergoes
time-logarithmic free-volume relaxation. If the picture of
a dense material was complete, a reasonable initial state
should correspond to values of vf for which the factor
exp��v1=vf� is vanishingly small: the system is an aged
glass. However, for a finite temperature, free volume is
expected to equilibrate at some nonvanishing value.
Temperature dependence is not included in the current
approach; the initial condition for vf is a fraction of v0,
which is small, but not as small as would be expected
from an old material.

I first describe the resulting behavior in a constant
stress experiment (creep test), before discussing constant
strain-rate experiment (tribology).
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Stress � is fixed. To simplify the analysis, I separate
Eqs. (4)–(6) from Eq. (3). Equations (4)–(6) admit two
types of solutions: for small values of the applied stress
[� 2 �0; �y�, with �y tanh��y� � 1=�] the only solutions
are jammed states, ( _��pl � 0), with � � tanh����; above
the yield stress, � > �y, jammed states become unstable,
and another branch of solution appears, which is stable: a
flowing regime ( _��pl � 0), with � � 1, � � 1=��, and

_��pl � E0 exp��v0=vf��sinh��� � cosh���=�����: (7)

Free-volume dynamics (3) admits three types of be-
havior: either logarithmic relaxation toward 0, _��pl re-
mains small, the material creeps; or vf reaches some
nonzero steady value, and the system flows; or vf di-
verges, in which case, the weights exp��v1=vf� and
exp��v0=vf� saturate to 1. The behavior displayed de-
pends on �, compared to the threshold �c, solution of
E0�� sinh��� � cosh���=�� � E1. Below �c, free volume
remains bounded, either relaxing logarithmically to 0 or
converging to some asymptotic value. Above �c, vf either
keeps relaxing to 0 or diverges, depending on its initial
conditions. The latest stages of the dynamics, when vf
gets large, are beyond the scope of the current work.
Various creep curves are shown in Fig. 1 (left panel)
which compare with experiments [5].

In a stress-strain test, _�� is fixed, while the shear stress is
determined by � � ��el, or _�� � �� _�� � _��pl�. Before pro-
ceeding, let me show that the same relation is involved in
overdamped stick slip. A layer of lubricant is sheared
between two plates; the gap between the plates is denoted
a and the surface of contact S. A pulling force F is exerted
on the upper plate, with a spring of stiffness k, pulled at
velocity V. Neglecting the inertia of the upper plate, F �
k�Vt� x�. The position x of the upper plate is related to
the deformation of the lubricant by _xx � 2a _��pl, and the
shear stress is � � F=S, whence _�� � �k=S��V � 2a _��pl�,
which is of the form _�� � �� _�� � _��pl�. Identical equations
govern both systems, although, remarkably, a solid is
FIG. 1. Left panel: Creep test, deformation as a function of
time at fixed �. Parameters E0 � E1 � 0:1, v0 � 0:5, v1 � 0:4,
� � 10, �0 � 1, and initial conditions � � 0, � � 0:01, and
vf � 0:25. From bottom to top, � � 2, 3, 3.7, 3.9, 4.1, 4.2, and
4.5. Right: Friction force ( / �) as a function of the velocity of
the upper plate ( / _��pl) during stick-slip motion as shown in
Fig. 2 (right panel).
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usually considered in the former case, and a liquid (at
room temperature) in the latter.

In the following, � � 1 is taken as the initial condition.
This is consistent with the fact that stress-strain curves
(or stiction peaks) present well-defined features after
preparation of the sample by shearing, in which case
the dynamics of � saturates, and Eq. (6) decouples.

Figure 2 presents examples of behavior resulting from
the integration of Eqs. (3)–(5) with _�� � �� _�� � _��pl� and
for different values of _��. For large values of _��, the system
follows a stress-strain curve which presents strain soft-
ening. (Note that this is true for the current choice of
parameters, and that strain hardening can be seen for
other values.) In the language of tribology, a stiction
peak leads to steady sliding. Softening can be under-
stood as follows: during the first stage of the dynamics,
plastic deformation _��pl remains zero, or very small, either
because � is below the yield stress, or because free
volume remains small; the shear force increasing, tran-
sient creeping motion induces dilatancy, thus triggering
plastic deformation, a further increase of vf, and �
starts to decrease with the increasing activation factor
exp��v0=vf�. For the largest values of _�� (here _�� �
0:1; 0:15; 0:2), free volume diverges, leading the system
to melting or breakup. For intermediate values (here _�� �
0:08) the system converges to steady sliding with finite
free volume. For small _��, stick-slip motion is observed,
sliding peaks being associated to sudden rises of the free
volume. The friction force is multivalued, and � as a
function of _��pl is shown in Fig. 1 (left panel); the cycle
FIG. 2. Behavior of sheared materials for fixed strain rate _��.
Parameters of the theory are E0 � 0:1, E1 � 0:1, v0 � 0:5,
v1 � 0:4, � � 10, and �0 � 1. Initial conditions are � � 0,
� � 1, and vf � 0:25. Left panel: strain softening for _�� �
0:08 (solid line); 0:1 (dashed line); 0:15 (dot-dashed line); 0:2
(dotted line). (Those values are defined up to a time constant
and do not need to compare quantitatively with actual values.)
Divergence of vf is seen for the three largest values of _��. Right
panel: stick-slip motion obtained for _�� � 0:01.
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is followed in the clockwise direction and is remarkably
similar to cycles reported in experiments [7].

It has been checked that the results presented here do
not depend qualitatively on other possible choices of R�,
so long as free-volume activation is incorporated. In
particular, the rates can be linearized around � � 0.
The factor exp��v0=vf�, however, is essential, and ac-
counts for the fact that at low free volume, activated
processes slow down dramatically. The expression chosen
allows one to factorize exp��v0=vf� in Eqs. (1)–(6); it
simplifies somehow the constitutive equations, but more
importantly, free volume enters the kinetics of shear
motion only as far as it determines its time scale. The
coupling between free-volume relaxation and shear de-
formation is realized through this mechanism only, which
is a rather minimal and subtle effect.

It is noteworthy that an early approach to stick slip
relied on the introduction of rate-and-state laws, previ-
ously used to study earthquakes dynamics [11]. In the
current work, free volume is identified as a logarithmi-
cally relaxing state variable responsible for strain soft-
ening and stick-slip motion. The importance given to free
volume provides a direct test of the theory since some
appropriate control of the free-volume kinetics could, in
principle, prevent stick-slip motion. Although difficult to
realize in most experimental setups, this might turn out
to have an important practical impact.

The current approach has remained at a qualitative and
general level; the specificities of microscopic interactions
are not considered and are expected to enter the theory
via its parameters. The introduction of a few mesoscopic
observables and the dynamical coupling via free-volume-
dependent time scales leads to a simple structure of con-
stitutive equations that strikingly accounts for important
properties of dense, glassy materials. Mesoscopic observ-
ables permit one to integrate over small scales and hence
introduce short-range correlations; the general structure
of the resulting equations corresponds to the introduction
of ‘‘symmetries’’ in a dynamical sense.

This theory has now to pass the test of a more stringent
comparison with experimental data. This might require
minor adaptations, e.g., to the case of granular materials
[3,10], but the mechanism proposed is of great simplicity
and should adapt to various types of structural systems.
A complete picture of dynamical properties of dense
materials will require, however, to incorporate the spatial
extension of a sample of material and account for local-
ization of the deformation into shear bands. Recent de-
velopments in STZ theory have shown a possible
mechanism [12] and should benefit from the incorpora-
tion of free-volume dynamics.
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