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Coagulation of Charged Microparticles in Neutral Gas and Charge-Induced Gel Transitions
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Coagulation of charged particles was studied using the mean-field Smoluchowski equation. The
coagulation equation was generalized for the case of a conserved system of charged particles. It was
shown that runaway cluster growth (gelation) solutions exist if the charge-dipole (induced) interaction
of clusters is included. When clusters are in thermal equilibrium with the ambient gas, the charge-dipole
interaction dramatically enhances the aggregation process and considerably increases the likelihood of
a gelation transition.
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Coagulation (or aggregation, clustering) is very impor-
tant for various processes in different branches of physics
and chemistry; for instance, polymerization [1], transi-
tions in colloidal systems [2], plasma etching [3], planet
formation [4], etc. In many cases coagulation can be con-
sidered as an irreversible process of cluster merging, due
to the pair interaction of smaller clusters [5]. Different
aspects of the aggregation theory for uncharged systems
were studied in detail in the past two decades (see, e.g.,
[5–7] and references therein).

Experimental study of coagulation in a cloud of micron
size particles embedded in a rarefied neutral gas is
quite important for understanding the nature of the
coagulation process [8]. During a recent series of the
‘‘PlasmaKristall-Experiment –Nefedov’’ experiments [9]
performed onboard the International Space Station, we
investigated the coagulation of micron size monodisperse
particles in a neutral gas under microgravity [10].
In several experimental runs up to �106 melamine-
formaldehyde particles of 3:4 �m size were injected into
the chamber filled with Ar gas at a pressure of 0.7 mbar.
The mass spectrum of the resulting particle clusters
(number of clusters n containing k particles) was mea-
sured. It was shown that starting from a certain moment
n�k� is not bounded at large k, but exhibits an algebraic
tail, n�k� / k��. Simultaneously, the growth of a single
large agglomerate occurs, accumulating �104–105 par-
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ticles in a fewseconds. The coagulation process develops
several orders of magnitude faster than was expected. A
huge agglomerate is formed while the aggregation among
smaller clusters is still going on. All the observed features
are peculiar to the so-called ‘‘gelation transition’’ (run-
away cluster growth). This phenomenon is well known in
the aggregation theory of uncharged systems [6,11].

Further investigation of the data obtained in the ex-
periments [10] showed that the clusters were charged,
positively or negatively. The charge magnitude was at
least a few thousand electron charges. We believe that
the enormously fast aggregation we observed is due to
the charging. Kinetics of the charge-induced coagulation
in neutral gases is very different from that in plasmas,
where the charging is due to the absorption of electrons
and ions and charge of the cluster is a certain function of
the size (mass). In our case, however, the external sources
of charging are absent and the total (initial) charge of the
system is conserved.

In this Letter, we propose a theory of pair clustering in
a conservative charged system. The simplest way to de-
scribe the aggregation process is to use the so-called
mean-field theory and to generalize the Smoluchowski
coagulation equation for the case of two independent
variables—the cluster mass m and the charge Q. Then
the kinetic (coagulation) equation for the distribution
function of clusters n�m;Q; t� can be written in the fol-
lowing form:
@
@t

n�m;Q; t� �
1

2

Z m

0
dm0

Z 1

�1
dQ0K�m0; Q0;m�m0; Q�Q0�n�m�m0; Q�Q0; t�n�m0; Q0; t�
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0
dm0

Z 1
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dQ0K�m0; Q0;m;Q�n�m0; Q0; t�;

(1)
where K�m0; Q0;m;Q� is the coagulation rate coefficient
(kernel) —the probability for a pair of clusters, �m0; Q0�
and �m;Q�, to merge. The kernel is obviously symmetric
with respect to the pair exchange: K�m0; Q0;m;Q� �
K�m;Q;m0; Q0�. The obtained equation is averaged over
the velocity distribution, and the kernel is
K�m0; Q0;m;Q� � hvr��a0; Q0; a;Q;vr�i; (2)

where vr � jv� v0j is the relative velocity of the clusters
and angle brackets denote averages. When clusters are in
thermal equilibrium with an ambient gas, we have the
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equipartition velocity dispersion, hvri / m�1=2
� , with

m� � mm0=�m
m0� the reduced mass of the pair.
Below we consider this case. The merger cross section
� is a function of the ‘‘effective’’ aggregate radius a. The
explicit relation between a and m is given by the appro-
priate scaling law with fractal dimension Df [5],

m / aDf : (3)

For different aggregation processes, the fractal dimension
can vary from Df ’ 3 (dense, or compact clusters, upper
limit) down to ’ 1:4–1:5 (fluffy aggregates) [5,7].

Obtaining exact solutions of the coagulation equation
is not a simple task even in the charge-independent case.
The solutions with arbitrary initial conditions are known
for only a few types of the kernel (e.g., K � const,
/ m
m0, and / mm0) [6]. The asymptotic solutions for
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the high-mass tail are also known for K / m�m0� (with
maxf�; �g � 1) [12]. For a constant kernel, the asymp-
totic solution was obtained for the distribution that de-
pends on a vector of conserved quantities [13], which in
the case of two components can be interpreted as the
dependence on mass and charge. No analytic solutions
are known for the charge-dependent kernels. However,
the major features of the aggregation process can be
understood by analyzing moments of the distribution
function,

M�;��t� �
Z 1

0
dm

Z 1

�1
dQm�Q�n�m;Q; t�: (4)

The general moments equations are derived by multiply-
ing Eq. (1) with m�Q�, integrating over m and Q, and
changing the order of integration in the first integral. The
result is
_MM�;� �
1

2

Z 1

0

Z 1

0
dm0dm

Z 1

�1

Z 1

�1
dQ0dQ��m
m0���Q
Q0�� �m�Q� �m0�Q0��K�m0; Q0;m;Q�n0n; (5)
where n0 � n�m0; Q0; t�. Equation (5) is valid as long as n
is exponentially bounded at the high-mass and high-
charge end—then the integrals converge for arbitrary �
and � (the coagulation kernel usually has algebraic
asymptotics at large m and Q).

To determine the coagulation rate coefficient (2), one
has to derive the merger cross section. We assume that the
relative motion of clusters during the collision is ballistic
(whereas the overall motion is diffusive). Then the cross
section is defined by the effective potential energy of the
pair cluster interaction, Ueff�r; �� � Er��=r�2 
Uch�r� 

Ud�r�, with � the relative impact parameter and
Er �

1
2m�v

2
r the kinetic energy of the relative motion. A

major contribution to the coupling energy is provided by
the charge-charge and charge-dipole (induced) interac-
tions (Uch and Ud, respectively) with the following radial
dependencies [14]:

Uch�r� �
QQ0

r
;

Ud�r� ’ � �d

�
a3Q02

r2�r2 � a2�



a03Q2

r2�r2 � a02�

�
; (6)

where �d is the coefficient of the dipole interaction. For a
sphere of dielectric permittivity � the coefficient is
�d � ��� 1�=��
 2�. The charge-charge interaction is
stronger when both clusters are highly charged, so that
the merger energy of the interaction, jUch�a
 a0�j, ex-
ceeds considerably the mean kinetic energy hEri. The
charge-dipole interaction decreases with r much faster
than the charge-charge interaction and, therefore, can
only be important at r� a
 a0. However, when one or
both clusters are weakly charged and jUch�a
 a0�j &

hEri, the range of the charge-charge interaction becomes
shorter and the charge-dipole interaction is more impor-
tant: One can show using Eq. (6) that jUd�a
 a0�j is
normally larger than jUch�a
 a0�j (unless both Q0=Q
and a0=a lay in a certain relatively narrow range, or �d

is too small). Hence, in the first case (‘‘highly charged
clusters’’) the cross section is [15]

�ch � ��a
 a0�2�1� Ech=Er�; (7)

with Ech � Uch�a
 a0� � QQ0=�a
 a0� the merger en-
ergy. Note that, for clusters having the same sign of
charge and Ech > Er, the cross section is equal to zero
due to Coulomb repulsion. In the second case, when the
clusters interact mostly via Ud�r�, the expression for the
cross section cannot be derived in the general case. For
a� a0 the coupling can be approximated by Ud�r� ’
��d�a3Q02 
 a03Q2�=r4, and the corresponding cross sec-
tion is [15]

�d � ��a
 a0�2 �

�
2

������������
Ed=Er

p
; Ed=Er > 1;

�1
 Ed=Er�; Ed=Er < 1;
(8)

with Ed � �Ud�a
 a0� � �d�a
3Q02 
 a03Q2�=�a
 a0�4

is the merger energy. In the absence of charges the ag-
gregation is determined by the geometrical cross section,
�g � ��a
 a0�2.

Before solving the moment equations (5) with the
kernels corresponding to the cross sections (7) and (8)
let us outline some universal properties of Eq. (5) relevant
to arbitrary kernels. As long as Eq. (5) is valid, the
coagulation equation (1) provides the conservation of
mass and charge. In terms of moments we get _MM1;0 �
_MM0;1 � 0. Introducing the cluster number density as
M0;0 � N�t�, we obtain from Eq. (5) that _NN�t� is always
negative and thus the density decreases monotonically
with time, as it should be for irreversible aggregation.
The mass and charge conservation can be rewritten as
Nhmi � C1;0 and NhQi � C0;1, with hmi and hQi the
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average mass and charge per cluster, which increase
with time.

We make the following assumption about the initial
conditions, which simplifies significantly the subsequent
analysis: Suppose that the initial overall charge of
the particles equals zero, i.e., C0;1 � 0. If we assume
further that the initial charge distribution is symmetric,
n�m;�Q; 0� � n�m;Q; 0�, then the symmetry is con-
served, since the coagulation rate is an even function
of the charges: K�m0;�Q0;m;�Q� � K�m0; Q0;m;Q�.
Then we get from Eqs. (4) and (5) that all odd Q
moments are identically equal to zero, and even moments
(� � 2i) are M�;� � 2

R
1
0 dm

R
1
0 dQm�Q�n. There-

fore, the odd Q moments (� � 2i
 1) we use below
are the ‘‘absolute charge’’ moments: M�;��m; jQj� �
2
R
1
0 dm

R
1
0 dQm�jQj�n.

Let us now study how much the charge-induced inter-
action can enhance the aggregation.

Charge-charge interaction.—Assuming that the
merger energy of the interaction exceeds significantly
the average kinetic energy, Ech � hEri, we get from
Eq. (7) the following expression for the coagulation rate:

K�m0; Q0;m;Q� ’

�
�K0�m

0; m�Q0Q; Q0Q < 0;
0; Q0Q > 0;

(9)

where K0 � ��a
 a0�hvr=Eri. Coagulation between op-
positely charged clusters is possible only in this limit, and
thus the charge distribution becomes narrower with time.
The coagulation is enhanced compared to the uncharged
case by the factor �Ech=hEri. In order to demonstrate
general features of the solution of the moment equations,
let us assume K0�m0; m� � const. This does not change the
results qualitatively, but makes them much simpler (un-
less K0 increases too steeply with m and m0, which is
not the case). Substituting Eq. (9) into the moment equa-
tions (5), we obtain for the second charge and mass
moments:

_MM0;2 � �1
2K0M

2
0;2;

_MM2;0 �
1
2K0M2

1;1:
(10)

From the first Eq. (10) we get the charge dispersion:
M0;2�t� � NhQ2i � M0

0;2�1

1
2K0M

0
0;2t�

�1, i.e., it de-
creases as / t�1 at large time scales. The mean cluster
mass s�t� is determined by the mass dispersion: s � M2;0=
M1;0. Using the second Eq. (10) we can easily evaluate the
upper bound for M2;0�t�. From the Cauchy inequality
we obtain _MM2;0 �

1
2K0M2;0M0;2. Substituting M0;2 ’

�12K0t�
�1, we have _MM2;0 � M2;0=t. Hence, M2;0 / t, i.e.,

the mean cluster mass does not grow faster than linearly.
Charge-dipole interaction.—The charge dispersion de-

creases with time due to the charge-charge enhanced
coagulation, and when the mean merger energy of the
charge-charge interaction ( / hQ2i) becomes less than
hEri, the charge-dipole interaction is more important.
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The corresponding coagulation rate is a function of the
absolute values of the charges, K � K�m0; jQ0j;m; jQj�.
For this type of the kernel there exists one more integral
of the coagulation equation: _MM0;2 � 0, or NhQ2i � C0;2.
Since N always decreases with time, the charge disper-
sion grows, in contrast to the case of the charge-charge
interaction. We write the coagulation kernel in the follow-
ing algebraic form (omitting a constant factor):

K�m0; Q0;m;Q� � m�m0�jQ0j" 
m0�m�jQj"; (11)

where � and � are the mass exponents (�
 � � "), and
" the charge exponent. (For the sake of convenience, we
also omit the part corresponding to the geometric cross
section; its role is discussed in the conclusion.) The values
of � and � can be obtained from the asymptotic behavior
of the general expression for K in the limit a=a0 � 1 [6].
However, the expression for the charge-dipole coagula-
tion cross section and thus for the corresponding kernel
can be derived analytically only for a=a0 � 1 [see Eq. (8)].
Nevertheless, we apply the cross section (8) for the analy-
sis below: This expression was obtained using the ap-
proximation for the interaction energy, which (the
absolute value) is always smaller than the actual jUd�r�j
from Eq. (6). Hence, Eq. (8) allows us to estimate the
lower edge of the charge-dipole coagulation rate. This
gives the charge exponent equal to 1 or 2, depending on
the ratio Ed=hEri and, using the scaling law (3), yields
the total mass exponent " � 3

2D
�1
f � 1

2 for " � 1 and
" � D�1

f � 1
2 for " � 2.

It is well known that in some uncharged systems a
special kind of phase transition called ‘‘gelation’’ is pos-
sible (see, e.g., [6,11] and references therein). At a certain
‘‘gelation moment’’ tgel the ensemble becomes unstable
against the formation of a single cluster of ‘‘infinite’’
mass. This process is also called ‘‘runaway growth.’’
The gelation develops if the coagulation rate increases
sufficiently steeply with the mass, " > 1. Mathe-
matically, this is because at t � tgel the distribution func-
tion for such kernels is no longer bounded exponentially
at the high-mass end, but behaves algebraically,
n�m; tgel� / m�� with 2< � < 3. In terms of the moments
it means that the gel particle accumulates the mass com-
parable with the total mass of the system, so that the mass
dispersion, or the mean cluster mass, s�tgel� / M2�tgel�,
diverges. Let us show that the aggregation process with
the charge-dipole interaction can enhance the gelation
dramatically. As an example, consider the coagulation
kernel of the form: K�m0; Q0;m;Q� � mQ02 
m0Q2. For
this kernel " � 1 and thus gelation without the charge-
induced interaction (corresponding to " � 0) is not pos-
sible. For the cluster density we have _MM0;0 � �C1;0C0;2,
i.e., the density decreases linearly, N�t� � N0�1� t=tN�,
where tN � N0=�C1;0C0;2�. For the higher moments we
have
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_MM2;0 � 2M1;2M2;0;
_MM1;2 � M2

1;2 
M2;0M0;4;
_MM0;4 � 6M1;2M0;4:

(12)

Using the first and the third equations we get (neglecting
lower order terms) _MM1;2 ’ 4M2

1;2. The solution of this
equation has a singularity, M1;2�t� / �1� 4M0

1;2t�
�1, the

mean cluster mass diverges as well, s�t� � M2;0=M1;0 /
M1=2

1;2 , which is an indication of the gelation transition.
Since M0

1;2 � C1;0C0;2=N0 � t�1
N , we get the gelation time

tgel �
1
4 tN and the number density in this moment is

N�tgel� �
3
4N

0. Thus, we have shown that the charge-
dependent coagulation can cause runaway growth. Note
that NhQ2i � const, and the charge dispersion does not
change considerably up to the gelation moment
hQ2ijt�tgel �

4
3 hQ

2ijt�0. Therefore, the assumption that
the charge-dipole interaction prevails is valid at least up
to t � tgel.

Now we can derive the gelation transition criterion for
the kernel (11). First we consider the case " � 1. The
behavior of s�t� is determined by the equation _MM2;0 �
2M�
1;0M�
1;1. Using the Hölder inequality, we can
evaluate the upper bound for M2;0 and thus find the
necessary condition for the transition. First, we have
M�
1;0 � C1��

1;0 M�
2;0, which is valid for 0<� < 1.

Then, M�
1;1 � C1=2
0;2 M

1=2
2�
2;0, and transforming M2�
2;0

(valid for �1=2< �< 0) we obtain _MM2;0 �
2C1�"

1;0 C1=2
0;2 M

"
1=2
2;0 . We see that the mean cluster mass

diverges when "
 1
2 > 1, i.e., the necessary condition

for the gelation is " > 1
2 .

Similarly, for " � 2 we get _MM2;0 � 2M�
1;0M�
1;2.
Transforming M�
1;2 � C�1

1;0M
2
�=2
1;1 and using the

Hölder inequality for M2
�=2
1;1 � C0;2M�
2;0 (valid for

�1< �< 0), we derive _MM2;0 / C�"
1;0C0;2M"
1

2;0 . Now, the
gelation condition is " > 0. Combining the obtained
results we have the following gelation condition for the
kernel (11):

"
 1
2" > 1; (13)

in contrast to " > 1 for the charge-free case. Criterion
(13) shows that the charge-dipole interaction enhances
the aggregation significantly and stimulates the gel phase
transition.

Let us compare the gelation conditions for the charge-
dipole and pure geometrical coagulation. Equation (13)
shows that in the presence of charge-induced interactions
the kernel need not necessarily be a steep function of
mass—for the charge exponent " � 2 the mass exponent
" is sufficient to be positive. Smaller " implies higher
values of the fractal dimension Df of clusters. Using
Eq. (13) we get the critical Df which are necessary to
start the gelation for different types of coagulation:
For charge-dipole coagulation with " � 2 we have
" � D�1

f � 1
2 , and the gelation condition is Df < 2; with

" � 1 we have " � 3
2D

�1
f � 1

2 , and Df <
3
2 . For
195502-4
geometrical coagulation " � 2D�1
f � 1

2 , and the gelation
at Df <

4
3 .

These results are obtained for the case of
(i) equipartition (thermal) velocity distribution, when
hvri / m�1=2

� (hEri � const). It is worthwhile to consider
the opposite limit of (ii) mass-independent velocity dis-
persion, with hvri � const (hEri / m�). The values of "
are different in this case: For charge-dipole coagulation
with " � 2, we have " � D�1

f � 1, and the gelation when
Df < 1; with " � 1 we have " � 3

2D
�1
f � 1

2 , and Df <
3
2 .

For geometrical coagulation " � 2D�1
f , and the gelation

at Df < 2.
Clusters produced due to the Brownian motion are very

fragile and fluffy, with an average value of the fractal
dimension about ’ 1:8–2 [7]. Thus, for the velocity dis-
tribution (i), e.g., when clusters are in thermal equilibrium
with ambient gas, the gelation is more probable due to the
charge-dipole interaction. In contrast, for the distribution
(ii), e.g., for a beam of ‘‘cold’’ particles, the clusters are
rather dense (Df is higher) and a gel transition is only
possible for pure geometrical coagulation.

In conclusion, we generalized the Smoluchowski co-
agulation equation for conserved systems of charged par-
ticles. Analysis shows that the equation allows the
runaway, or gelation, solution. When clusters are in ther-
mal equilibrium, the charge-induced interaction dramati-
cally enhances the aggregation process and makes the gel
transition more likely.
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