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Nonlinear Theory of the Ablative Rayleigh-Taylor Instability
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A fully nonlinear sharp-boundary model of the ablative Rayleigh-Taylor instability is derived and
closed in a similar way to the self-consistent closure of the linear theory. It contains the stabilizing
effect of ablation and accurately reproduces the results of 2D DRACO simulations. The single-mode
saturation amplitude, bubble and spike evolutions in the nonlinear regimes, and the seeding of long-
wavelength modes via mode coupling are determined and compared with the classical theory without
ablation. Nonlinear stability above the linear cutoff is also predicted.
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�k, for each k-Fourier mode of the perturbation. The use the ablation front is neglected and the ablation surface,
The Rayleigh-Taylor instability (RTI) has great rele-
vance in inertial confinement fusion (ICF) and astrophys-
ics [1]. In ICF, the imploding shell is accelerated inward
by the low density ablating plasma and the outer shell
surface is unstable to the RTI. Mass ablation is caused by
the heat front propagating through the shell and driven by
the laser energy absorbed at the critical surface.

It has long been known [2] that mass ablation reduces
the growth rate of the RTI in the linear regime. However,
only recently [3] has a self-consistent linear theory for
subsonic ablation flows identified the physical mecha-
nisms of stabilization. These are clearly revealed for abla-
tion fronts with large Froude numbers typical of direct
drive ICF capsules with cryogenic deuterium-tritium
(DT) ablators. Here the Froude number is a dimensionless
parameter Fr�V2

a=gLa, where g is the inward target
acceleration, La is the characteristic thickness of the
ablation front, and Va is the ablation velocity of the
material with density �a. The average mass ablation
rate is _mmav��aVa. For perturbations with wave num-
ber k�2�=�, the ablative RTI growth rate for Fr�1
is 
�

���������������������������������������������������
�2kVa�2�kg�k2V2

a=�k

p
�2kVa, where �k�

�2kLa=n�
1=n, n being the exponent in the Spitzer thermal

conductivity (�Sp�KTn). The cutoff wave number is
estimated from kcLa��kc=Fr	1, indicating that the
unstable spectrum consists only of long-wavelength
modes. The density defined as �k��k�a has the meaning
of the hot blowoff density at a distance �2k��1 from the
ablation front. Because of heat flux, the high blowoff
velocity (
Va=�k) produces restoring forces, similar to
the rocket effect. The ablation and the vorticity generated
through the ablation front damp the growth, giving the
�2kVa term. A simple linear sharp-boundary model
(SBM) with two incompressible fluids, of densities �a
and �h	�a, was developed [4] (large n or dominant
heat conduction region underlies such approximation),
which reproduces the same results when the interface is
approximated by an isotherm, and �h is substituted for
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of the SBM with this self-consistent closure (SCC) has
proved to be very fruitful in linear theory [5].

Attempts have been made to infer the physics of the
nonlinear RTI at ablation fronts [6]. These theories used
heuristic approaches leading to inaccurate results. Here
we present a fully nonlinear model based on the recently
developed 2D-SBM. It is derived from first principles and
closed with an approximation similar to the SCC of the
linear theory. It is applicable for ablation fronts with large
Fr, when the cutoff of the unstable spectrum occurs for
long-wavelength perturbations, kLa 	 1. As the model
correctly captures the physics of the ablative stabilization,
it is a basic tool to study many aspects of the single-mode
nonlinear ablative RTI and multimode interaction includ-
ing, self-consistently, nonlinear ablation effects.

For simplicity, we consider a planar foil of thickness ‘,
subject to an acceleration g due to the ablation pressure Pa
generated by the heat flux coming from the corona: Pa, g,
Va, and ‘ are assumed constant over the characteristic
RTI time scale. Attention is restricted to a region of char-
acteristic thickness k�1

c about the ablation front, such that
La	k�1

c 	‘, and let "2�kcV2
a=g (� �kc 	 1). In the

frame (orthonormal vectors ~eex, ~eey, ~eez) moving with the
unperturbed (y � 0) ablation front (acceleration �g~eey),
we use one-fluid equations for an ideal gas with heat
conduction [3]: continuity, momentum, and an isobaric
approximation (subsonic flow) for the energy

@t��r� �� ~��� � 0;

��@t� ~�� � r� ~�� ��rp��g~eey;

r � �52Pa ~���KTnrT� � 0;

P� �T � Pa;

(1)

where �, ~��, P, and T are density, velocity, pressure, and
temperature, respectively, p� P�Pa is the perturbed
pressure (jpj 	 Pa), K is a constant, and no motion
occurs in the z direction [~rr � �x;y�]. The thickness of
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arbitrarily parametrized, is at ~rra � �"�#; t�; $�#; t��. The
solution in the two regions is matched using mass _mm �
� ~��0 � ~nn, momentum p~nn� _mm ~��0, and energy 5

2Pa ~��
0 � ~nn�

KTnrT � ~nn fluxes conservation; ~tt and ~nn are the tangent
and normal (towards the expanding plasma) unit vectors
at the interface, and ~��0 is the fluid velocity relative to it
( ~��0 � ~nn � ~nn � ~��� ~nn � @t ~rra). The momentum flux conserva-
tion yields the continuity of both the tangential velocity,
~�� � ~tt, and q� p� _mm2=�. The solution in the dense region
(Dc) is simplified by neglecting the heat flux and assum-
ing a potential flow with constant density �a and velocity
~��c �r'�Va ~eey. The perturbed velocity and pressure
variations are of order

����������
g=kc

p
and �ag=kc, respectively.

Since _mm
O��aVa�, we have p ’ q on the cold side of the
interface. Hence, the fluid motion is described by the
Laplace equation for ', a kinematic equation for the in-
terface, and the Bernoulli equation

�'� 0 �x;y2Dc�; r'� 0 at y��1; (2)

~nn � @t ~rra � ~��c � ~nn� _mm=�a at ~rr� ~rra; (3)

@t' ’ g$� 1
2�r'�

2 �Va@y'�q=�a at ~rr � ~rra: (4)

Equations (2)–(4) are the time evolution equations of
the ablating surface; q and _mm are determined below.
Setting q� _mm � Va � 0, (2)–(4) describe the classical
RTI with Atwood number unity. Next, we have the hot
blowoff region (Dh), with density �h
"2�a, velocity
�h
Va="

2, and perturbed pressure ph
�h�
2
h. Inte-

grating the energy equation in (1), we get ~��h ’
~��r� _mmavr*=�h, ~��r being its rotational part and *�
2KTn=5n _mmav. The vorticity, !~eez �r� ~��r, is generated
at the ablation front and convected to the underdense
region. Now, using ~��h and taking the ablation surface as
an isotherm, the continuity of the energy flux and of the
tangential velocity leads to ~��c � ~��r at the interface. This
allows us to assume that ~��r remains small [
O�"�]
compared with the potential part ( /r*), throughout
the Dh region. Then, substituting for ~��h the velocity in
the continuity Eq. (1), neglecting O�"=n� terms, one
finds the following eigenvalue problem:

�* ’ 0; �x;y2Dh�; (5)

*�~rr � ~rra; t� ’ 0; @y* ’ 1 at y�1: (6)

The latter of Eqs. (6) corresponds to a uniform flow in the
far blowoff region. The solution of (5) and (6), taking into
account energy conservation through the interface, yields
the mass ablation rate

_mm � �h ~��0
h � ~nnja � _mmavr* � ~nnja; (7)

because of the faster ablation at the peaks with respect to
the bottom of bubbles, the instability growth is slowed
down. Finally, the description of the hot region is com-
pleted by using r� ~��r � 0, and momentum equation. The
latter is simplified by using the incompressible flow ap-
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proximation which holds as long as the power index for
thermal conduction n is well above unity [4,5]. Using ~��h,
the momentum equation, up to O�"�, is �h ~��h�!~eez ’
r�12�h�

2
h�ph� _mmav@t*�. Its integration along the inter-

face (~tt � r� @s), inside the hot region, yields ph �
� _mm2=2�h�

R
_mm!ds, where the second term is an

indefinite integral along the interface and s is the arc-
length. Then, q ’ � _mm2 � _mm2

av�=2�h�
R

_mm!ds, with the
constant _mm2

av=2�h introduced for convenience. The lead-
ing term of the so-called rocket effect, q, is the stabiliz-
ing restoring force. The vorticity equation derived from
the above momentum equation (2D flow) simplifies to
~��h � r! ’ 0. It follows, neglecting O�"� in ~��h, that r* �
r!� 0, indicating that ! depends only on .(harmonic
conjugate function of *). Setting ~��r � @y ~eex��Va�
@x � ~eey leads to the following eigenvalue problem for
the stream function  in the Dh region: � ��!�.�
with  bounded, and ~��c � ~��r at ~rr � ~rra. One can get the
solution by the conformal map �x;y� ! �.;*� and the
k-Fourier transform on the . coordinate ( _mmavd.�
_mmds). Then, the vorticity is obtained from the following

linear integral equation:

Z 1

�1
!d.

Z 1

0

e�jkj*�ik.d*

jr*j2
�

Z 1

�1

r' � �ik~nn�jkj~tt�
jkj� _mm= _mmav�

� e�ik. d.; (8)

which in linear theory (*� y, .� x, "� #� x) repro-
duces the vorticity obtained in self-consistent theory,
!�2@2xy'jy�0�2@2xt$ [3,4]. The model would be closed
if in the leading term [qL�� _mm2� _mm2

av�=2�h] of q the den-
sity �h were specified. In the SBM linear theory (.�x)
the self-consistent closure is introduced in Fourier space
[4,5]. That is, let _mm� _mmav�1 _mm, 1 _mm being a small per-
turbation, and 1 _mmk�F�1 _mm��

R
1
�11 _mme�ik.d. its

k-Fourier transform on the .. Then, the linearized leading
restoring force, _mmav1 _mm��1

h , is substituted in Fourier
space for 1qLk� _mmav1 _mmk�

�1
k . It follows that in physical

space 1qL� _mmavF
�1�1 _mmk�

�1
k �, where F�1 is the inverse

Fourier transform operator. Having the unstable spec-
trum modes with kLa	1 only, the contribution to that
integral of the short wavelength modes, kLa>1, is
negligible. Hence, it is unmodified if ��1

k is redefined
as ��1

k ���1
a ��1

k H�1�jkjLa�, where H is the
Heaviside function, and defining La�2KTna=5 _mmav as
usual [3–5]. In this way, 1qL is a convolution pro-
duct, _mmav�1 _mm ���1

bl �� _mmav

R
1
�11 _mm�.0;t���1

bl �.�.
0�d.0,

where ��1
bl �.��F�1���1

k �. Its simpler extension to non-
linear theory, which fulfills the requirements of reproduc-
ing the linear case, is performed by estimating the
blowoff density, ��, with the local characteristic thick-
ness of the front [�2KTna=5 _mm�� _mm= _mmav�La] instead of
La. Thus ��1

� �71=n��1
k , where 7� _mm= _mmav. Such a den-

sity will be lowered in the vicinity of the tip of the spike,
with respect to the density �k in linear theory. Then, the
rule to get qL is applied in a similar way, and the total
195002-2
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rocket effect is

q’ _mm2
av��7

2�1�71=n���2�bl�
�1� _mmav

Z
!d.: (9)

For a mode with wave number k, Eqs. (2)–(9) repro-
duce the linear results [4,5]: setting $�$kL�t�coskx,
we get _mm’ _mmav�1�k$kLcoskx�, etc., and then d2t $kL’
�4kVadt$kL�kg�1�~kk�$kL, where ~kk��k=kc�

1�1=n.
Our model is supported by the agreement with the

results of the 2D DRACO [7] simulations. Now, we inves-
tigate the nonlinear evolution of an initially small per-
turbation, $1�0� coskx. Laplace equations (2) and (5) are
solved by means of a Fredholm integral equation of first
kind [8]. Then we get ~nn � r' on the interface and 7.
Equation (8) is solved by expanding ! in Fourier series
on .,

P
!je

ijk.. Then, Eqs. (3) and (4) are numerically
integrated with the orthogonal gauge ~tt � @t ~rra � 0; for
each time step, we need _mm, !, and q


P
��72 �

1�71=n�j cos�jk.�=j1=n, where �� � ��j means the j-Fourier
coefficient. In Fig. 1 we compare the model with the
simulations. Dimensionless bubble and spike amplitudes
versus time are shown for two wavelengths. The target
was a 100 �m cryogenic (DT) foil irradiated by 0:35 �m
laser light with an intensity of 5� 1013 W=cm2. The
initial front-surface amplitude is taken as 0:1 �m. The
parameters n ’ 2:1 and La ’ 0:04 �m were determined
as in Ref. [9]. The ablation front was defined as the
isodensity contour at some fraction f � 0:2 of the maxi-
mum density. Notice that both isodensity and isothermal
contours overlap at the ablation front as the pressure
varies slowly through the front. The results are not sensi-
tive to the choice of f because the density profile is very
sharp at the ablation front. After a transient time of 1.6 ns
in which Richtmyer-Meshkov oscillations [5] take place,
the foil starts to accelerate with the average values of g ’
60 �m=ns2 and Va ’ 3:3 �m=ns (Fr ’ 4:5). The cutoff
wavelength predicted by linear theory [3,4] and simula-
tion is about 10 �m. Equations (3) and (4) were inte-
grated with a small enough initial amplitude to have a
FIG. 1. Spike and bubble amplitudes versus time. Also the
shapes of the ablation front (inset) are plotted (� � 50 �m)
and compared with that of the DRACO simulation (dots) at t �
4:6 ns. Thin and thick dashed lines correspond to the Eqs. (10)
and (12), respectively.
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wide time interval still in linear regime where $1�t� /
e
t. Its time origin was shifted in order to compare with
the linear amplitude of the numerical simulation after a
transient time, and once the RTI has taken place. Large
amplitudes are well reproduced by the model as well as
the shape of the ablation front (t � 4:6 ns, � � 50 �m).
The good agreement confirms the accuracy of the theory.
The shapes obtained from the model for 4.1 and 4.9 ns are
also shown. The tip of the spike is flattened and widened
due to the dynamical overpressure and consequently the
shape becomes multivalued. The spike-bubble asymmetry
begins at bigger amplitude than that of the classical RTI
due to the nonlinear stabilizing ablation effects. This is
more noticeable for shorter wavelengths.

Next we determine the essential nonlinear features of
the ablative RTI: bubble-spike asymmetries, nonlinear
coupling, bubble asymptotic velocity, and nonlinear
single-mode saturation. In classical RTI theory [10], dur-
ing the early nonlinear evolution, the higher harmonics
are produced with phases enhancing the spike growth
over the bubble growth and initiating the bubble-spike
asymmetry. In the ablative RTI theory such a physical
picture is somewhat different. In a weakly nonlinear
analysis [$ �

P
$j cos�jkx�] up to third order, the ampli-

tudes of the fundamental mode $1, second, and third
harmonics are significantly modified respect to the
classical RTI amplitudes (details will be published
elsewhere). Here we report the final results
for k < kc

$3 �
1
8�1� 4~kk��3� 4~kk�k2$3kL;

$2 � �1=2� ~kk�k$2kL;

$1 � $kL �
�2� ~kk��1� 2~kk�

8�1� ~kk�
k2$3kL;

(10)

where $kL is the linear amplitude. In the limit case
k=kc ! 0, the results of classical RTI [10] are recovered.
It follows from (10) that the occurrence of negative or
positive feedback to the harmonics depends, contrary
to the classical RTI, on the wave number. The feedback
to the fundamental mode is null when ~kk � 1=2 leading to
k ’ 0:27kc for n � 2:1. Regarding the spectrum of gen-
erated modes, the following feature is roughly noticed:
the portion of spectrum with j harmonic above kc=k has
the sign opposite to that of the first harmonic. Looking at
the spike, as � $kL � $2, or bubble, ab � $kL � $2, in-
cipient amplitudes, the asymmetry of the shape is reduced
or even inverted if ~kk > 1=2. The thin dashed lines in
Fig. 1 show the bubble and spike amplitudes obtained
from (10). Observe that in the 20 �m case (~kk > 1=2), the
highest one corresponds to the bubble. The same feature,
though weaker, can be noticed in both the full nonlinear
model and the simulation results in the interval 15<
t

������
kg

p
< 17:5. Another important aspect concerns the gen-

eration of long-wavelength modes via mode coupling.
When two modes are initially present, nonlinear inter-
195002-3
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action leads to the appearance, in particular, of the beat
mode k12 � k1 � k2. The most relevant is the beating of
modes with wave numbers about the wave number for
maximum growth rate. At second order, Eqs. (2)–(9)
yield their amplitude as

$k12 � �1
4jk12j�1�

3
8j
~kk12j�1=n�$k1L$k2L; (11)

indicating that the seeding of long-wavelength modes,
jk12j 	 kc, is enhanced with respect to the classical
case (/ jk12j) [6]. This is an important result as long-
wavelength modes cause macroscopic distortion of the
imploding shell leading to nonuniform compression of
the hot spot.

A Layzer-type approach [11] yields the asymptotic
bubble velocity Vb0 �

�����������
g=3k

p
� Va (

�����������
g=3k

p
is the Layzer

asymptotic velocity for classical RTI). Observe that, con-
trary to the results of Oron [6], the bubbles with wave-
length � < 6�FrLa are smoothed out by ablation. The
same type of approach gives us the asymptotic spike
acceleration gs � g�1� Va=Vb0 � g~kk=�4kV2

b0��
�1. A use-

ful estimate of bubble-spike amplitudes in the nonlinear
regime can be obtained by instantaneously switching the
nonlinear evolution [11] from exponential growth to con-
stant velocity bubble (or free fall), at a time t0 in which
the linear velocity equals the asymptotic bubble velocity

ab ’ Vb0�

�1 � t� t0�; as ’ ab�

1
2gs�t� t0�

2: (12)

In such expressions (thick dashed lines in Fig. 1), S�k� �

�1Vb0 is usually defined as the saturation amplitude.
The classical saturation amplitude of 0:1� is recovered
when the long-wavelength limit k=kc ! 0 is considered.
However, for shorter wavelength modes well into the
ablative regime, the saturation amplitude is significantly
different from the classical prediction. Values of 0:15�
and 0:2� are obtained for 50 and 20 �m wavelength
perturbations, respectively (in agreement with the simu-
lations), indicating that mass ablation extends the linear
growth phase with respect to the classical case. This
result is particularly important in light of the fact that
the output of one dimensional ICF implosion simulations
are commonly postprocessed using Rayleigh-Taylor mod-
els based on the classical linear saturation amplitude of
0:1�. For wavelengths shorter than 20 �m, our model
predicts saturation amplitudes up to 0:3� near the cutoff
wavelength (
 12 �m). Simulations near the cutoff are
difficult to perform as small variations from steady state
lead to oscillations in the cutoff wavelength. However, a
14 �m wavelength simulation has clearly indicated a
saturation amplitude slightly exceeding 0:2� (that is,
somewhat less than the theoretical prediction of 0:25�).

Finally, we show some analytical results for k � kc.
About the equation governing $kL�t�, the periodic small
perturbation $ � $kL�0� coskcx is an equilibrium shape.
Then, a steady equilibrium, $e�x� �

P
$ej cos�jkx�,
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with fundamental wave number k should have a bifurca-
tion at k � kc. Setting @t � 0 in Eqs. (3) and (4) a weakly
nonlinear analysis close to kc yields $ej for ~kk > 1: $e1 �
�k�1�~kk � 1�1=2, $e2 � �k$2e1=4, etc. Obviously such a
bifurcated equilibrium is unstable. Hence, contrary to
the common wisdom, for perturbations with k > kc, the
ablation surface may become nonlinearly unstable if the
initial amplitude is outside an attraction basin, for in-
stance, if jk$1�0�j >

������������
~kk � 1

p
. In fact, at the cutoff kc,

any finite perturbation is indeed unstable, and its slow
growth [approximately linear in time for jkc$1�0�j 	 1],
outside the scope of simulations, has a rate 
c �
�kc$1�0��

2g=4Va.
In conclusion, a fully nonlinear SBM of the ablative

RTI accounting ablation effects is developed. It reprodu-
ces the results of simulation codes and sheds new light on
the nonlinear ablation physics. The model is a basic tool
that is expected to cause further understanding of this
problem.
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