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Semiclassical Dirac Theory of Tunnel Ionization
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We present analytic tunnel ionization rates for hydrogenlike ions in ultrahigh intensity laser fields, as
obtained from a semiclassical solution of the three-dimensional Dirac equation. This presents the first
quantitative determination of tunneling in atomic ions in the relativistic regime. Our theory opens the
possibility to study strong laser field processes with highly charged ions, where relativistic ionization
plays a dominant role.
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solution of the Dirac equation for relativistic field ioniza-
tion of hydrogenlike ions is given. The analytic ionization

determined by a quasiclassical solution. A complete wave
function can be constructed by matching of these two
The large progress in laser technology during the past
decade has allowed the realization of laser pulses with
peak intensities of 1021 W=cm2 [1]. The next generation
of laser sources will supply sub-10 fs pulses with peak
intensities up to 1023 W=cm2 [2]. At such intensities, ions
up to charge states Z � 50–60 can be ionized. At near
infrared laser intensities above 1018 W=cm2, the motion
of the electrons in a laser field becomes relativistic.
Therefore, in the extreme parameter range accessible
now by experiment, nonrelativistic tunnel ionization the-
ories [3] are expected to break down. Currently, there
exists no quantitative theory for relativistic tunnel ion-
ization of atomic ions.

Field ionization is the primary process in matter ex-
posed to high-intensity laser radiation, responsible for
the generation of plasmas with energetic electrons and
ions. The resulting particle dynamics is relevant for a
wide range of research fields, such as atomic physics
[4], astrophysics [5], plasma physics [6], and nuclear
physics [7]. For example, the relativistic drift energy
acquired by electrons during optical field ionization was
utilized recently for the generation of sub-MeV to MeV
electron bunches [8]. However, some of the observed
photoelectron spectra exhibit features that are incon-
sistent with nonrelativistic ionization theory [9].
Understanding of this and other phenomena in the rela-
tivistic parameter regime makes a quantitative knowl-
edge of optical field ionization indispensable.

The large potential for interesting applications has
driven the quest for a theoretical understanding of rela-
tivistic optical field ionization. A 3D numerical solution
of the Dirac equation in strong laser fields is prohibitively
difficult [10], making analytical approaches necessary.
Recently, an analytic solution of the Klein-Gordon equa-
tion for �� atoms in static electric and magnetic fields
was given [11]. In contrast to that, atomic ions were
calculated by solving the Dirac equation [12,13] with
exponential accuracy only, so far.

In this Letter, a quantitatively correct, semiclassical
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rates go over into the ADK (Ammosov-Delone-Krainov)
theory [3] in the nonrelativistic limit. The main difference
between relativistic and nonrelativistic theory arises from
the difference in binding energies, which starts to play a
role for charge states Z > 20. The difference increases
with increasing Z and becomes up to an order of magni-
tude for Z � 60. Ions with such charge states are gener-
ated at intensities between 1023 and 1024 W=cm2.

The Dirac equation is solved in the relativistic system
of units c � m � �h � 1, where c is the light velocity,m is
the electron mass, and �h is Planck’s constant. Electron
positron pair creation, arising in quantum electrodynam-
ics, is negligible for the highest charge states (Z � 60)
and laser intensities (1023 W=cm2) investigated here. This
is because the binding energy of 0.1 MeV for Z � 60 is
much smaller than the energy gap between electron and
positron continuum (�1 MeV). Further, pair creation in
vacuum takes place only at intensities close to the 6 orders
of magnitude higher Schwinger intensity defined below.

The ground-state bispinor wave function for the hydro-
genlike atom with charge Z is given by [14]

�gs � ŜSBr"�1 exp���r�; (1)

with quantum numbers j � 1=2, m � 1=2, � � �1.
Here, r �

���������������������������
x2 � y2 � z2

p
and ŜS � �s1; s2; s3; s4� is a

bispinor with components s1 �
������������
1� "

p
, s2 � 0, s3 �

�
������������
1� "

p
�z=r�, and s4 �

������������
1� "

p
�x� iy�=r. Further,� �

e2Z denotes the inverse of the Bohr radius a0 � 1=�
and B � 2"�1�"�1=2

���������������������������������
1=����2"� 1�	

p
. Finally, the

energy of the ground state (Z < 137), " �
���������������
1��2

p
, can

take values lying in the interval 0< "< 1.
Our analysis of tunnel ionization is performed in the

quasistatic approximation [1] and relies on the WKB
theory [14]. The ground state (1) remains valid close to
the nucleus, where the influence of the laser field is
negligible. Far away from the nucleus, where the effect
of the Coulomb potential is weak, the wave function is
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solutions. Matching must be done in the region a0 

z0 
 a, where both solutions are valid. Here, a � 3��2 �
1�=2eF� is the outer turning point [14], � �
�1=2��

��������������
"2 � 8

p
� "�, e is the electron charge, and F is

the laser electric field. The laser electric/magnetic field is
assumed to be polarized in the z=y direction and to
propagate in the x direction. In the quasistatic approxi-
mation, the electric and magnetic fields are assumed to be
constant during the tunnel process. Further, the extension
of the ionic ground state is much smaller than the laser
wavelength, a0 
 �, so that the laser electric and mag-
netic fields may be assumed spatially constant. Under
these assumptions, the vector and scalar potential in the
Lorenz gauge are found to be A � Fzx̂x and ’ � Fz [15].

The quasiclassical solution is given by

�qc � ŜS
C�����
pz

p exp

�
i
Z z

z0

pzdz� i
Z x

x0

pxdx� i
�
4

�
; (2)

where pz and px are the relativistic, canonical momenta
in the direction of laser polarization and wave vector,
respectively. The lower limits z0 and x0 denote the match-
ing point. Note that in the presence of relativistic laser
fields, the classical electron trajectory is two dimensional.
The motion remains constant in the direction of the
magnetic field, in which no force acts on the electron.
Hence, the y direction may be omitted in the classical
parts of our derivation.

Calculation of the quasiclassical momenta is done in
two steps. First, the classical, canonical momenta pzc,
pxc, and pyc are determined. Approximation of the mo-
menta in Eq. (2) by the classical momenta is sufficient to
obtain the ionization rate with exponential accuracy.
However, in order to determine the preexponential factor,
in a second step, the classical momenta must be replaced
by the quasiclassical momenta accounting for the quan-
tum mechanical uncertainty around the classical trajec-
tory. The classical canonical momenta are determined
from the complex two-dimensional trajectory of the elec-
tron sub-barrier motion. The trajectory is obtained by a
solution of the classical, relativistic equations of motion
subject to the following boundary conditions: birth time
t � 0, z�t � 0� � a, z�t0� � x�t0� � 0 with t0 a complex
time at which the electron energy is equal to the binding
energy ". The electron trajectories are found in terms of
the parametric equations [11,15]

x �
i

2F�

�
��2 � 1�u�

1

3
u3
�
;

z �
1

2F�
�3��2 � 1� � u2	;

t �
i

2F�

�
��2 � 1�u�

1

3
u3
�
;

(3)

where 0 � u �
��������������������
3��2 � 1�

p
is the parametric variable.

The appearance of complex space coordinates, momenta,
and times is associated with the classically forbidden sub-
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barrier motion of electrons. After the electron leaves the
barrier, all quantities become real.

From Eq. (3) the total classical energy of the electron is
found to be E�u� � ��2 � u2 � 1�=�2��. The relativistic,
classical canonical momentum is calculated by pzc �
�dz=dt�E � i

����������������������������������������������
1� P2

xc � �"� eFz�2
p

, where Pxc �
E�dx=dt� � pxc � eFz is the classical kinetic momentum
in the x direction and the canonical momentum pxc �
px0 � pxc�t0� � �1=4��3"�

��������������
"2 � 8

p
�< 0 is equal to the

initial x momentum at time t0. Finally, pyc � 0. The
integral over dx in the quasiclassical wave function (2)
gives no contribution, as pxc is a constant and x�t � t0� �
x�t � 0� � 0. The remaining quasiclassical wave func-
tion (2), dependent only on the z integral, must be
matched to the ground-state wave function. Finally, the
quasiclassical momenta px � pxc � "px and py � pyc �
"py are introduced that allow for a small deviation from
the classical trajectories.

The constant C is determined by connecting Eq. (2) to
the ground-state wave function. For that purpose, we
perform a Fourier transformation of Eq. (1) with respect
to the transverse coordinates x; y which results in

�gs�z0;p?� � ŜS
2�B
~ppz

exp��~ppzz0 � " lnr0�: (4)

Here, ~ppz �
��������������������
p2
x0 ��2

q
denotes the momentum in the area

left to the matching point, where F is negligible.
Matching of Eq. (2) and of (4) yields the constant C �
�2�B=

������
~ppz

p
� exp�" lnr0 � ~ppzz0�, so that the quasiclassical

wave function under the barrier is completely determined.
In order to calculate the ionization rate, the exponen-

tially decaying sub-barrier wave function is connected to
the oscillating wave function on the right side of the outer
turning point a [14] representing the ionized part of the
electron wave function. By using x; y � 0 at z � a, we
obtain

j�qc�z > a;p?�j � ŜS
2�B������
~ppz

p 1��������
jpzj

p
� exp

�
�
Z a

0
jpzjdz� " lnr0

�
; (5)

where the bispinor ŜS � �
������������
1� "

p
; 0;�

������������
1� "

p
; 0�.

Calculation of the integral in Eq. (5) gives
R
a
0 pzdz �

��2 � p2
?�

3=2=�3eF�"� px�	.
The integral

R
pzdz was calculated by neglecting the

Coulomb potential. To correct for that, we start from the
quasiclassical wave function in the time domain, Q �
exp�i

R
�Edt� that is equivalent to the space domain

representation exp�i
R
pdr� with dr � �dx; dy; dz� used

so far. This is because pdr � pvdt � �Edt, where �E
represents the change in energy caused by the presence of
the Coulomb potential. By calculating the integral over
the auxiliary variable (dt � du�dt=du	), the Coulomb
correction is found to be
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jQj2 �
�
2%2�3� %2�3=2���
3

p
eF
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1� %2

p �
2"
exp

�
6� arcsin

%���
3

p � 2" lnr0

�
;

(6)

where % �

�����������������������������������������������������
1� �1=2�"�

��������������
"2 � 8

p
� "�

q
.
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The current is connected to the Coulomb corrected
wave function by jz � pzjQ�qc�z > a; px; py�j

2. Note
that the arbitrary value of r0 cancels out in jz, in accord-
ance with the requirements of WKB analysis [14]. By
expanding px; py in the exponent around pxc; pyc, we
obtain
jz �
8�2B2

~ppz

�
2%2�3� %2�3=2���
3

p
eF

��������������
1� %2

p �
2"
exp

�
6� arcsin

%���
3

p �
2

���
3

p
%3

eF�1� %2�
� A"p2

y �D"p2
x

�
; (7)

with the expansion coefficients A �
���
3

p
%=�eF� and D � %�%2 � 3�=�

���
3

p
eF�. The parameter ~ppz expressed in terms of %

becomes ~ppz �
���
3

p
%=

��������������
1� %2

p
. Equation (7) gives the transversal momentum distribution of the wave function at its time

of birth in the continuum. The longitudinal momentum is determined by the fact that pz�z � a� � 0. The current is
connected to the ionization rate by w � 1=�2��2

RR
jz�"px; "py�d"pxd"py. Performing the integration over the

transversal momenta results in

wr �
�eF�1�2"

2
���
3

p
%��2"� 1�

��������������
3� %2

3� %2

s �
4%3�3� %2�2���

3
p

�1� %2�

�
2"
exp

�
6� arcsin

%���
3

p �
2

���
3

p
%3

eF�1� %2�

�
: (8)
The tunnel ionization rate (8) can be transformed into SI
or Gaussian units by making the following substitutions:
wr ! wr�mc2= �h�, eF ! F=Fs, and � � e2Z!
e2Z=� �hc�, where Fs � m2c3=e �h � 1:32� 1016 V=cm is
the Schwinger field strength [16] corresponding to an
intensity Is � 4:7� 1029 W=cm2. For the current in
Eq. (7), the substitution jz ! jzmc

3= �h must be made.
Equations (7) and (8) are the main result of this Letter,

giving for the first time a quantitative description of
tunnel ionization of atomic ions and of the resulting
electron spectra. Tunnel ionization theory is valid in the
so-called quasistatic or low frequency regime *
 1,
where

* �
�h!

mc2
Fs
F

��������������������������
1�

�
"

mc2

�
2

s
(9)

denotes the relativistic generalization of the Keldysh pa-
rameter in Gaussian and SI units. In the nonrelativistic
limit, * reduces to the original Keldysh parameter [17].
In Eq. (9) ! denotes the circular frequency of the laser
field.

In the remainder of this Letter, relativistic tunnel ion-
ization of atomic ions will be characterized on the basis of
Eq. (8). In order to be able to present data over a wide
range of laser intensities, the ionization rates in Fig. 1 are
plotted as a function of F=Fbs, where

Fbs �
Fs
4�

�1�
���������������
1��2

q
�2 (10)

is the relativistic generalization of the barrier suppression
field strength [18]. This is the field strength at which the
maximum of the effective Coulomb barrier is equal to the
binding energy, i.e., V�z� � ��=zm � eFzm � "� 1.
The position zm, at which the barrier is maximum, is
determined by �d=dz�V�z� � 0.
In Fig. 1(a) the semiclassical Dirac ionization rate (8)
is depicted for various values of Z. The experimentally
relevant range for tunnel ionization is between 0:3<
F=Fbs < 0:7. The upper limit is set by the fact that for
wr � 1 ionization is saturated within a fs.

Figure 1(b) shows the ratio of relativistic ionization rate
wr, Eq. (8), to the nonrelativistic ADK ionization rate wnr
[3]. For Z � 1 the nonrelativistic and the relativistic
theory agree, which corroborates the validity of
our analysis. Note that for F=Fbs ! 0, wr=wnr /
�F=Fbs�

�2
! 0, which comes from the difference between

relativistic and nonrelativistic binding energy. However,
the range F ! 0 is experimentally irrelevant as the ion-
ization rate disappears. For Z � 10 relativistic effects
start to appear. Up to Z � 20 the difference between
relativistic and nonrelativistic ionization theory is negli-
gible within experimental accuracy. At Z � 40 and 60 a
deviation of up to a factor 3 and 10 appears in the
experimentally relevant parameter regime.

The agreement between nonrelativistic and relativistic
theory becomes better with increasing field strength.
This, at first sight, counterintuitive behavior can be under-
stood by recalling that there are two sources for relativ-
istic effects: electron motion in the electromagnetic field
(i) and in the nuclear potential (ii). As the distance under
the barrier is extremely short and the electron is born with
zero velocity in the continuum, (i) is expected to be weak.
However, it is well known that for Z � 10 relativistic
effects must be taken into account to model the ground-
state wave function correctly [14]. For larger field
strengths the laser field increasingly dominates the elec-
tron dynamics, as compared to the nuclear potential,
which explains the increasingly better agreement found
in Fig. 1(b).

In conclusion, an analytic, quantitative theory of tun-
nel ionization of atomic ions in relativistic laser fields was
193001-3
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FIG. 1. (a) The relativistic ionization rate (8) for ionic charge
states Z � 1; 10; 20; 40; 60. The field strength is normalized to
the barrier suppression field strength, Fbs, given in Eq. (10). For
Z � 1; 10; 20; 40; 60, the barrier suppression intensities are
Ibs � 1:4� 1014, 1:4� 1020, 9:0� 1021, 6:3� 1023, and 8:1�
1024 W=cm2, respectively. (b) The ratio of Dirac (wr) to non-
relativistic (wnr) instantaneous ionization rates in an electro-
magnetic field.
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derived. This gives quantitative, theoretical access to a
new regime of plasma physics, where dynamical proc-
esses caused by ionization play a fundamental role. Here,
we briefly discuss one example. It was demonstrated in
recent experiments with laser intensities of a few times
1018 W=cm2 that the (relativistic) drift energy acquired
by electrons during ionization can be used for the gen-
eration of MeV electron pulses [8]. As the electron drift
energy acquired at a Ti:S (� � 800 nm) laser intensity of
1023 W=cm2 is in the GeV range, this scheme holds the
potential for the generation of single, ultrashort, highly
directed, GeV electron pulses. A quantitative analysis of
this process will be subject to further investigations, for
which knowledge of Dirac tunnel ionization rates will be
indispensable.
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