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Imprinting Vortices in a Bose-Einstein Condensate using Topological Phases
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Vortices were imprinted in a Bose-Einstein condensate using topological phases. Sodium conden-
sates held in a Ioffe-Pritchard magnetic trap were transformed from a nonrotating state to one with
quantized circulation by adiabatically inverting the magnetic bias field along the trap axis. Using
surface wave spectroscopy, the axial angular momentum per particle of the vortex states was found to
be consistent with 2 �h or 4 �h, depending on the hyperfine state of the condensate.
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FIG. 1. Geometry of the rotating magnetic field for imprint-
ing topological phases. (a) The unit vectors b̂b��� point in the
direction of the two-dimensional quadrupole field providing
the radial confinement of a Ioffe-Pritchard magnetic trap. The
atomic angular momenta rotate about the unit vectors n̂n��� as
the axial bias field, Bz, is ramped from positive to negative
values. (b) For an atom in state jF;mFi, its atomic angular
momentum, ~FF, traverses a path on a sphere of radius jmFj �h as it
adiabatically follows its local magnetic field. The primed
coordinate system is centered on the atomic position and has
axes parallel to those of the unprimed coordinate system in (a).
For an atomic position described by the azimuthal angle �, ~FF
rotates in a half-plane defined by �0 � �� for mF > 0 and
�0 � ��� � for mF < 0 as Bz is inverted. After inverting Bz,
the relative topological phase acquired between atoms located
at positions 1 and 2 in (a) is proportional to the solid angle
where B0 is the radial magnetic field gradient and qua-
subtended by the shaded surface, bounded by the contour
marked with arrowheads (see text).
As superfluids, Bose-Einstein condensates support ro-
tational flow only through quantized vortices. The atomic
velocity field is proportional to the gradient of the phase
associated with the macroscopic wave function. This
phase winds through an integer multiple of 2� radians
around a vortex line. Such a phase winding can be im-
printed onto the condensate wave function either dynami-
cally or topologically. Dynamically, the phase of the
condensate evolves according to the time integral of its
energy, which can be tailored locally with a spatially
varying external potential. Topologically, the phase of
the condensate advances through adiabatic variations in
the parameters of the Hamiltonian governing the system.
This phase, which is solely a function of the path tra-
versed by the system in the parameter space of the
Hamiltonian, is known as Berry’s phase [1].

In this Letter, we implement the proposal of Refs. [2–5]
and demonstrate the use of topological phases to imprint
vortices in a gaseous Bose-Einstein condensate. Pre-
viously, vortices have been generated in two-component
condensates using a dynamical phase-imprinting tech-
nique [6] and in single-component condensates by rotat-
ing the cloud with an anisotropic potential [7–10], by
slicing through the cloud with a perturbation above the
critical velocity of the condensate [8,11], and through the
decay of solitons [12,13]. In this work, 23Na condensates
were prepared in either the lower, jF;mFi � j1;�1i, or
upper, j2;�2i, hyperfine state and confined in a Ioffe-
Pritchard magnetic trap. Vortices were created by adia-
batically inverting the magnetic bias field along the trap
axis and could be removed by returning the bias field to
its original direction. Using surface wave spectroscopy
[14–16], we measured the axial angular momentum per
particle of the j1;�1i and j2;�2i vortex states to be
consistent with �2mF �h as predicted [2–5].

A Ioffe-Pritchard magnetic trap consists of an axial
bias field (with curvature) and a two-dimensional quadru-
pole field in the orthogonal plane [17,18]:

~BB�x; y; z� � Bzẑz � B0�xx̂x � yŷy�; (1)
0031-9007=02=89(19)=190403(4)$20.00
dratic terms have been neglected. For a condensate of
radial extent R, inverting Bz from Bz 	 B0R > 0 to Bz 

�B0R< 0 rotates the atomic angular momentum, ~FF, by�
radians. While all atomic angular momenta rotate
through the same angle, a relative phase is established
across the condensate because the angular momenta ro-
tate about a unit vector n̂n��� � sin�x̂x � cos�ŷy that de-
pends on the azimuthal angle, �, describing the atomic
position [Fig. 1(a)].

As Bz is inverted, ~FF adiabatically follows ~BB�x; y; z�,
and the condensate remains in the state jF;mFi with
respect to the local magnetic field. However, in a basis
 2002 The American Physical Society 190403-1
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fixed in the lab frame, the condensate makes the transi-
tion jF;mz � �mFi ! jF;mz � �mFi, wheremF andmz
are the projection of ~FF along the local magnetic field
direction and z axis, respectively. Applying the quantum
mechanical rotation operator gives the condensate wave
function in the lab frame after inverting Bz as

j i � e�i�
~FF = �h��n̂n����

���������
��~rr�

q
jF;mz � �mFi; (2)

� ��1�F�mF

���������
��~rr�

q
e�i2mF�jF;mz � �mFi; (3)

where ~FF is the angular momentum operator such that
~FF � h ~FF i and ��~rr� is the number density of condensed
atoms. The topological phase factor e�i2mF� describes a
vortex of winding number 2jmFj with the sense of rota-
tion dependent on the sign of mF.

This result can be interpreted in terms of Berry’s phase
[4]. Figure 1(b) shows the orientation of ~FF in the lab frame
formF > 0. Atoms located at position k � 1; 2 in Fig. 1(a)
have azimuthal angle �k and angular momentum ~FFk. As
Bz is inverted, ~FFk traces path k from top to bottom on the
sphere in Fig. 1(b). The topological phase acquired by an
atom in this process is solely a function of the path
traversed by its angular momentum vector. Since this
path depends on the azimuthal angle describing the
atomic position, a relative phase is established between
spatially separated atoms. The condensate wave function
after inverting Bz is given by

j i �
���������
��~rr�

q
ei����jF;mFi; (4)

where ���� is the topological phase acquired by atoms
with azimuthal angle �.

For an atom in state jF;mFi, Berry’s phase, ��C�,
acquired as its angular momentum vector traverses a
closed contour, C, on the surface of the sphere in
Fig. 1(b) is given by [1]

��C� � �mF��C�; (5)

where ��C� is the solid angle subtended by a surface
bounded by the contour C. Calculating the relative phase,
���1� � ���2�, with the aid of Eq. (5) requires closing
the contours traced by each ~FFk along an identical path.
For clarity, we choose to close each contour along path 2
itself, and hence ���1� � ���2� � ��C�, where C is the
contour formed by path 1 traversed from top to bottom
and path 2 traversed from bottom to top, as indicated with
arrowheads in Fig. 1(b).

A surface bounded by this contour subtends a solid
angle ��C� � 2��1 ��2�, yielding a relative phase
���1� � ���2� � �2mF��1 ��2�. Thus, we set

���� � �2mF�; (6)

up to an additive term independent of position. This yields
a reinterpretation of Eq. (3) in terms of Berry’s phase.

In this work, Bose-Einstein condensates containing
over 107 23Na atoms were created in the j1;�1i state in
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a magnetic trap, captured in the focus of an optical
tweezers laser beam, and transferred into an auxiliary
‘‘science’’ chamber as described in Ref. [19]. While opti-
cally confined by the tweezers, j2;�2i condensates were
generated by sweeping through the j1;�1i $ j1; 0i $
j1;�1i radio-frequency transition with 100% efficiency,
then sweeping through the j1;�1i $ j2;�2i microwave
transition with 80% efficiency [20]. In the science cham-
ber, the condensate was loaded into a microfabricated
Ioffe-Pritchard magnetic trap formed by a Z-shaped
wire carrying current I and an external magnetic bias
field, B?, as detailed in Ref. [21]. Condensates were
detected via axial absorption imaging whereby resonant
laser light propagating along the z axis illuminated the
atoms and was imaged onto a CCD camera.

Typical wire-trap parameters were I � 1200 mA,
B? � 5:4 G, and Bz � 1 G, resulting in a radial magnetic
field gradient of B0 � 120 G=cm. For j1;�1i (j2;�2i)
condensates, the axial and radial trap frequencies were
!z � 2�� 6:0 Hz (!z � 2�� 8:5 Hz) and !? � 2��
210 Hz (!? � 2�� 300 Hz), respectively. After trans-
fer into the wire trap, condensates in the j1;�1i (j2;�2i)
state contained over 2� 106 atoms (1� 106 atoms) and
had a lifetime in excess of 10 s (3 s) with an applied radio-
frequency shield. This represents the first magnetic trap-
ping of 23Na condensates in the upper hyperfine level,
with previous work done exclusively in optical dipole
traps [20].

Along the wire-trap axis, the magnetic field is

~BB�x � 0; y � 0; z� � �Bz �
1
2B

00z2�ẑz; (7)

where quadratic terms neglected in Eq. (1) have been
included. The axial magnetic field curvature, B00, which
arises from the geometry of the Z wire, was held constant
throughout the experiment. By reversing an external axial
magnetic field, we inverted Bz. Changing the sign of Bz,
but not B00, resulted in a magnetic field saddle point at the
center of the cloud and axial antitrapping of weak-field
seeking atoms. This limited the condensate lifetime after
inverting Bz to & 50 ms.

Vortices created by inverting Bz were observed after
ballistic expansion and were identified by central density
depletions due to the angular momentum barrier associ-
ated with a rotating cloud (Fig. 2). These vortices could be
removed by returning Bz to its original direction.

For j1;�1i condensates, the best results were achieved
by inverting the axial bias field linearly from Bz �
860 mG to �630 mG in 11 ms. For j2;�2i condensates,
the optimum ramp time over the same range was 4 ms.
The field inversion process caused an atom loss of � 50%
due to nonadiabatic spin flips as Bz passed through zero
[4,5]. The density depletions shown in Figs. 2(b), 2(c),
and 2(g) were observed after inverting the axial bias field
and holding the trapped condensate for longer than a
radial trap period. Thus, the atom loss from the center
of the cloud during the field inversion process could not be
190403-2



FIG. 2. Observation of vortices formed by imprinting topo-
logical phases. Axial absorption images of condensates in the
j1;�1i state after 18 ms of ballistic expansion (a) prior to
inverting Bz, after inverting Bz, and holding the trapped con-
densate for (b) 5 ms and (c) 20 ms, and (d) after inverting Bz
and then returning it to its original direction. Axial absorption
images of condensates in the j2;�2i state after 7 ms of ballistic
expansion (e) prior to inverting Bz, after inverting Bz, and
holding the trapped condensate for (f) 0 ms and (g) 5 ms, and
(h) after inverting Bz and then returning it to its original
direction. The field of view is (a)–(d) 570 �m� 570 �m and
(e)–(h) 285 �m� 285 �m.
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responsible for the observed density depletions. Typi-
cal j1;�1i (j2;�2i) condensates after inverting the
axial bias field contained up to 1� 106 atoms (0:5�
106 atoms) with a Thomas-Fermi radius RTF �
5:4� 0:2 �m (RTF � 4:5� 0:2 �m) in a trap with radial
frequency !? � 2�� 250 Hz (!? � 2�� 350 Hz).

The axial angular momentum per particle of the vortex
states was measured using surface wave spectroscopy
[14–16]. A superposition of counterrotating (m‘ � �2)
quadrupolar (‘ � 2) surface waves was excited in the
condensate by radially displacing the magnetic trap cen-
ter for 200 �s. Here ‘ and m‘ characterize the angular
momentum and its projection along the z axis of the
quadrupole modes, respectively. This created an elliptical
condensate cross section with time-dependent eccentric-
ity. In the absence of a vortex, the m‘ � �2 quadrupole
modes are degenerate and the axes of the elliptical con-
densate cross section remain fixed in time. This degener-
acy is lifted by the presence of a vortex, causing the axes
to precess in the direction of the fluid flow. The precession
rate, _��, is given by [14–16]

_�� �
hLzi

2Mhr2?i
; (8)

where hLzi is the axial angular momentum per particle
characterizing the vortex state,M is the atomic mass, and
hr2?i � hx2 � y2i is the mean-squared trapped condensate
radius with vortices present.

By measuring the precession rate of the quadrupole
axes and the mean-squared radius of the condensate in
the trap, the axial angular momentum per particle was
determined. After exciting the quadrupolar modes, the
condensate evolved in the trap for variable times in the
range 0:2–7:4 ms. The condensate was then released from
the trap and imaged with resonant light after ballistic
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expansion as shown in Figs. 3(a)–3(l). The resulting
images were fit to an elliptical Thomas-Fermi profile to
determine the orientation of the quadrupole axes. The
orientation angle is plotted as a function of time in
Fig. 3(m). To determine the mean-squared trapped con-
densate radius, vortices were imprinted in the condensate
but quadrupolar modes were not excited. Images of bal-
listically expanded condensates similar to those in
Figs. 2(b), 2(c), 2(f), and 2(g) were fit to a Thomas-
Fermi profile with a circular cross section. The fitting
routine ignored the central region of the cloud where
the density was depleted due to the vortex core. The
mean-squared trapped condensate radius was derived
through the relation

hr2?i �
2

7

R2
?

1�!2
?!

2 ; (9)

where R? is the Thomas-Fermi radius of the condensate
after ballistically expanding for a time ! from a trap with
radial frequency !?. The factor 1�!2

?!
2 accounts for

the change in Thomas-Fermi radius during the expansion
process [22], and the factor 2=7 results from averaging
over the inhomogeneous condensate density distribution
assuming no vortices are present. For low angular mo-
mentum vortex states, the density depletion at the vortex
core does not significantly modify the density distribu-
tion of the condensate, and we expect the 2=7 factor to
still be accurate [23].

For j1;�1i condensates, the quadrupole oscillation was
excited after a delay of 0, 5, and 20 ms from the com-
pletion of the inversion of the axial bias field. The
measured axial angular momenta per particle were
��1:9� 0:3� �h, ��2:1� 0:3� �h, and ��1:9� 0:2� �h, re-
spectively. The uncertainty in the measurement arises
from the linear fit to the precession angle and the deter-
mination of hr2?i. For j2;�2i condensates, the quadrupole
oscillation was excited immediately upon the completion
of the inversion of the axial bias field. The measured axial
angular momentum per particle was ��4:4� 0:4� �h. For
both internal states, the measurements are consistent with
the predicted axial angular momentum per particle of
�2mF �h [2–5].

Multiply charged vortices are unstable against decay
into singly charged vortices [24]. From our experiments,
we cannot determine if the condensate contained one
multiply charged vortex or multiple, singly charged vor-
tices. If multiple vortices were present, they must be
closely spaced since they were not resolved after ballistic
expansion. Furthermore, if the singly charged vortices
had moved apart considerably, it would have lowered the
extracted value of hLzi [15], which was not observed even
with delayed probing.

In conclusion, we have used topological phases to
imprint vortices in a Bose-Einstein condensate. Higher
angular momentum states can be generated by using
higher-order, axisymmetric multipole magnetic fields.
In general, this phase-imprinting technique opens the
190403-3



FIG. 3. Surface wave spectroscopy. Axial absorption images
after 18 ms of ballistic expansion of j1;�1i condensates under-
going a quadrupole oscillation (a)–(d) in the presence of a
vortex and (e)–(h) in the absence of a vortex. Successive images
were taken during successive half periods of the quadrupole
oscillation such that the short and long axes of the elliptical
cross section were exchanged. Images (a)–(d) show counter-
clockwise (positive) precession of the quadrupole axes, while
images (e)–(h) show no precession. (i)–(l) Axial absorption
images after 7 ms of ballistic expansion of j2;�2i condensates
undergoing a quadrupole oscillation in the presence of a vortex.
The images were taken during a single half period of the
quadrupole oscillation. Images (i)–(l) show clockwise (nega-
tive) precession of the quadrupole axes. The field of view is
(a)–(h) 570 �m� 570 �m and (i)–(l) 285 �m� 285 �m.
(m) Precession angle vs time in the presence of a vortex for
j1;�1i condensates measured after a delay of 0 ms (open
circles), 5 ms (open squares), and 20 ms (open triangles)
from the completion of the inversion of the axial bias field,
in the absence of a vortex for j1;�1i (open diamonds) and
j2;�2i (filled diamonds) condensates, and in the presence of a
vortex for j2;�2i condensates measured immediately upon the
completion of the inversion of the axial bias field (filled circles).
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potential for studying the stability of multiply charged
vortices and the dynamics of vortex-vortex interactions
at short separations.
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