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Universal Measurement Apparatus Controlled by Quantum Software
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We propose a quantum device that can approximate any projective measurement on a qubit —a
quantum ‘‘multimeter.’’ The desired measurement basis is selected by the quantum state of a ‘‘program
register.’’ Two different kinds of programs are considered and in both cases the device is optimized with
respect to maximal average fidelity (assuming uniform distribution of measurement bases). Quantum
multimeters exhibiting the covariance property are introduced and an optimal covariant multimeter
with a single-qubit program register is found. Possible experimental realization of the simplest
proposed device is presented.
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both the program and the fixed transformation so as to with probability one-half. This fidelity can be interpreted
Programmable quantum ‘‘multimeters’’ are devices
that can realize any desired generalized quantum mea-
surement from a chosen set (either exactly or approxi-
mately) [1]. Their main feature is that the particular
positive operator valued measure (POVM) is selected
by the quantum state of a ‘‘program register’’(quantum
software). In this sense they are analogous to universal
quantum processors [2–4]. Quantum multimeters could
play an important role in quantum state estimation and
quantum information processing.

In this Letter, we will describe a programmable quan-
tum device that can approximately accomplish any pro-
jective von Neumann measurement on a single qubit.
Since it is impossible to encode an arbitrary unitary op-
eration (acting on a finite-dimensional Hilbert space) into
a state of a finite-dimensional quantum system [2] it is
also impossible to encode arbitrary projective measure-
ment on a qubit into such a state [1]. However, it is still
possible to encode POVMs that represent, in a certain
sense, the best approximation of the required projective
measurements.

Suppose we want to measure a qubit in the basis rep-
resented by two orthogonal vectors j i and j ?i. We want
this measurement basis to be controlled by the quantum
state of a program register, j�p� �i. An ideal multimeter
would map the composite state of the measured system
and the program register to two fixed orthogonal pure
states j0i and j1i according to

j i � j�p� �i ! j0i; j ?i � j�p� �i ! j1i: (1)

As mentioned above, such a transformation cannot be
implemented exactly. Thus, our task is to find a realistic
linear trace-preserving completely positive (CP) map that
represents the closest approximation to this nonrealistic
map. We focus on the scenario when we always obtain one
of the two measurement results j0i or j1i, but errors, i.e.,
deviations from the ideal map (1), may appear. Our aim is
to minimize the probability of error; i.e., we will maxi-
mize the probability of the correct discrimination be-
tween states j i and j ?i. In general we could optimize
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optimally approximate the map (1) for a given dimension
of the program register. However, this is an extremely
hard problem that we will not attempt to solve in its
generality. Instead, we optimize the fixed transformation
for two natural choices of the program.

First we assume that the program register contains N
copies of the state j i, j�p� �i � j i�N . Our second
choice of the program—the two-qubit state j ij ?i—
is motivated by recent results on optimum quantum state
estimation. Gisin and Popescu showed that the state of
two orthogonal qubits j ij ?i encodes the information
on the state j i better than state of two identical qubits
j ij i [5]. If we possess one copy of the state j ij ?i,
then we can estimate j i with fidelity F? � �1	
1=

���
3

p
�=2 � 0:7887 which is slightly higher than the fi-

delity of the optimal estimation on one copy of two
identical qubits, F jj � 3=4 [5,6]. One would thus expect
that the state j ij ?i should also give an advantage when
used as a program of the multimeter. Rather surprisingly,
this is not the case and we shall see that it is better to use
two identical qubits j ij i.

In what follows we benefit from the isomorphism be-
tween CP maps and bipartite positive semidefinite opera-
tors [7,8]. Let H and K denote the Hilbert spaces of
input and output states, respectively. Choose basis jii in
H , define a maximally entangled state

P
i jiijii on H �2,

and apply the CP map to one part of this state. The
density matrix � of the resulting state on Hilbert space
H �K represents the CP map and the relation between
input and output density matrices reads [8]

	out � Trin��	Tin � 1out
; (2)

where T stands for the transposition in the basis jii and 1
denotes an identity operator. The CP map is trace preserv-
ing if the positive semidefinite operator � satisfies the
condition Trout��
 � 1in.

Let us define the fidelity F� � of our multimeter pro-
jecting onto states j i and j ?i as the probability that a
correct measurement result will be obtained when we
send the states j i or j ?i to the input randomly each
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as a success rate of the discrimination between two or-
thogonal states j i and j ?i. Assuming the program state
to be j i�N , the two relevant input states of the multi-
meter read

j�i � j i � j i�N; j�?i � j ?i � j i�N: (3)

The input Hilbert space of the multimeter is a tensor
product of the Hilbert space of signal qubit H s and
symmetric (bosonic) subspace H N

	 of the Hilbert space
of N qubits, H � H s �H N

	 and dimH � 2�N 	 1�. A
trace-preserving completely positive map � transforms
the input states onto the states of a single output qubit that
is subsequently measured in the computational basis. The
outcome j0i corresponds to the projection onto j i while
j1i is associated with the projection onto j ?i. Making
use of the input-output relation (2) we have

F� � � 1
2Tr���j�ih�j�T � j0ih0j


	 1
2Tr���j�?ih�?j�

T � j1ih1j
: (4)

The figure of merit that we maximize is the mean fidelity
obtained on averaging F� � over all pure qubit states j i,
i.e., over the surface of the Bloch sphere,

F �
Z
 
d F� � � Tr�R�
: (5)

The positive semidefinite operator R reads

R � RT0 � j0ih0j 	 RT1 � j1ih1j; (6)

where the operators R0 and R1 acting on the input Hilbert
space H are given by integrals

R0 �
1

2

Z
 
d j�ih�j; R1 �

1

2

Z
 
d j�?ih�?j: (7)

A straightforward calculation reveals that R0 is propor-
tional to the projector onto symmetric subspace H N	1

	 of
the Hilbert space of N 	 1 qubits,

R0 �
1

2�N 	 2�
��N	1�

	 : (8)

Furthermore, the sum of operators R0 and R1 is propor-
tional to the identity operator on the input Hilbert space,
R0 	 R1 � 1in=�2�N 	 1�
. Thus we immediately have

R1 �
1

2�N 	 1�
1in �

1

2�N 	 2�
��N	1�

	 : (9)

The determination of the optimum CP map amounts to
the maximization of the linear function (5) under the
constraints � � 0 and Trout��
 � 1in. The optimum CP
map that maximizes the mean fidelity (5) must satisfy the
extremal equations [8,9]

�� � 1out � R�� � 0; (10)

� � 1out � R � 0; (11)

where � is a positive definite operator on the input Hilbert
space. Notice that the extremal equations (10) and (11)
resemble the Helstrom equations for optimal POVM that
maximizes the success rate in ambiguous quantum state
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discrimination [10]. One can prove that if both Eqs. (10)
and (11) are satisfied, then � is indeed an optimal CP map
and F attains its global maximum on the convex set of
trace-preserving CP maps [9,11].

Because of the specific structure of the operator R we
can, without any loss of generality, assume that the opti-
mal CP map has the structure

� � �T
0 � j0ih0j 	�T

1 � j1ih1j (12)

and the optimal transformation on the signal and program
states is a joint two-component generalized measurement
described by the POVM whose two elements �0 and �1

are positive semidefinite operators summing up to the
identity operator. The two outcomes �0 and �1 form
the two possible outputs of the multimeter. On inserting
the CP map (12) into Eq. (5) we find that we have to
maximize the fidelity F � Tr�R0�0 	 R1�1
 under the
constraints �j � 0, �0 	�1 � 1in. Formally, this is
equivalent to the problem of optimum discrimination
between two mixed quantum states R0 and R1 which
was solved by Helstrom [10]. We must find the eigenstates
and eigenvalues of the operator �R � R0 � R1 and then
�0 and �1 are the projectors onto subspaces spanned by
the eigenstates with positive and negative eigenvalues,
respectively.

It turns out that the optimum POVM is formed by the
projector onto symmetric subspace of the N 	 1 qubits
and its orthogonal counterpart,

�0 � ��N	1�
	 ; �1 � 1in ���N	1�

	 � ��N	1�
� : (13)

On inserting the expressions (6) and (12) into Eq. (5), we
obtain the mean fidelity

F �
2N 	 1

2N 	 2
: (14)

Taking into account the trace-preservation condition
Trout��
 � 1in, we find from Eq. (10) that � �
Trout�R�
. After some algebra we arrive at

� �
1

2�N 	 1�
1in �

1

2�N 	 1��N 	 2�
��N	1�

	 : (15)

It is easy to check that the first extremal equation (10) is
satisfied for the POVM (13). The inequality (11) splits
into two independent inequalities for operators acting on
input Hilbert space, �� RT0 � 0 and �� RT1 � 0. One
can easily verify that these two inequalities are satisfied
which proves the optimality of the POVM (13).

We can now determine the effective POVM carried out
on the signal qubit,

�jj �Trp�1s � �j ih j��N ��N	1�
	 
;

�? �Trp�1s � �j ih j��N ��N	1�
� 
;

(16)

where Trp denotes trace over the program qubits. The
outcome �? cannot occur if the input state is j i because
the input state j�i belongs to the symmetric subspace of
N 	 1 qubits and �jj clicks with certainty. Hence the
POVM element �? must be proportional to the projector
190401-2
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j ?ih ?j. Since the sum of POVM elements (16) is an
identity operator, we have the following ansatz:

�jj � j ih j 	 �1� p�j ?ih ?j;

�? � pj ?ih ?j:
(17)

The probability p that �? clicks when the input state is
j ?i is given by p � h�?j�

�N	1�
� j�?i. After some alge-

bra we get p � N=�N 	 1� and the effective POVM rep-
resenting our universal multimeter reads

�jj �
1

N 	 1
1 	

N
N 	 1

j ih j;

�? �
N

N 	 1
j ?ih ?j:

(18)

Notice that the POVM (18) is asymmetric, which reflects
the asymmetry of the program register. Furthermore, the
fidelity F� � is independent of  and equal to the mean
fidelity (14). In the limit of an infinitely large program
register �N ! 1�, the POVM (18) approaches the ideal
projective measurement.

The program j i�N exhibits an important covariance
property. First note that the measurement basis fj i; j ?ig
can be obtained from the computational basis fj0i; j1ig via
a unitary transformation U2� � that belongs to the two-
parametric subset of the SU(2) group that is holomorphic
to the surface of the Bloch sphere and parametrized
by two Euler angles � and ’: U2� �j0i � cos�2 j0i 	
ei’ sin�2 j1i, U2� �j1i � �e�i’ sin�2 j0i 	 cos�2 j1i. Simi-
larly, the program j i�N 2 H N

	 is related to the program
j�p�0�i � j0i�N via unitary transformation UN	1� � that
belongs to the two-parametric subset of theN 	 1 dimen-
sional irreducible representation of SU(2).

We define covariant multimeters as all the multimeters
that satisfy the property

j�p� �i � UN	1� �j�p�0�i: (19)

The restriction to the two-parametric subset of the SU(2)
group guarantees that the program state j�p� �i is
uniquely defined for all j i and j�p�0�i. The covariance
property means that we can change the measurement
basis simply by properly rotating the quantum state of
the program register. For covariant multimeters, the prob-
lem of simultaneous optimization of the program and the
fixed measurement reduces to the determination of a
single optimum program state j�p�0�i � j�0i. The opera-
tors R0 and R1 for the program (19) read

R0��0� �
1

2

Z
 
d j ih j �UN	1� �j�0ih�0jU

y
N	1� �;

R1��0� �
1

2

Z
 
d j ?ih ?j �UN	1� �j�0i

� h�0jU
y
N	1� �:

Once we determine R0��0� and R1��0� we can express the
maximum achievable fidelity in terms of the sum of
absolute values of the eigenvalues �j��0� of the operator
�R � R0��0� � R1��0� [10],
190401-3
F��0� �
1

2
	

1

2

X
j

j�j��0�j: (20)

We must find the maximum of F��0� over all possible
programs j�0i � cos�02 j0i 	 ei’0 sin�02 j1i. We have per-
formed explicit calculations for a single-qubit program
register, N � 1, and found an analytic expression for the
mean fidelity,

F �
1

2
	

1

24
���
2

p
���������������������������������
25	 7 cos�2�0�

p

	
1

24

�������cos�0 � 1

2
sin�0

�������	
1

24

�������cos�0 	 1

2
sin�0

�������:
(21)

It is optimal to set �0 � 0, i.e., to choose j�0i � j0i and
the optimum program of the covariant multimeter with a
single-qubit register is given by j�p� �i � j i. We can
conjecture that the multimeters with the program j i�N

are optimum covariant multimeters also for N > 1.
We now turn our attention to the program j ij ?i. The

optimum CP map for this program can be found follow-
ing the same procedure as described above for the pro-
gram j i�N . Briefly, one has to calculate the operator R
and solve extremal equations (10) and (11). We will not
give the details of calculations here and present only the
results. Similarly as before, the optimum CP map is
equivalent to a generalized measurement on the signal
qubit and two program qubits. The two elements of this
three-qubit POVM read

�0 �
1
2�

�3�
	 	 j�1ih�1j 	 j�2ih�2j;

�1 � 13 ��0;
(22)

where 13 is an identity operator on Hilbert space of three
qubits and

j�1i �
1

2
���
3

p ��
���
3

p
	 1�j0isj01ip � �

���
3

p
� 1�j0isj10ip

� 2j1isj00ip
;

j�2i �
1

2
���
3

p ��
���
3

p
	 1�j1isj10ip � �

���
3

p
� 1�j1isj01ip

� 2j0isj11ip
: (23)

Here the subscripts ‘‘s’’ and ‘‘p’’ label the states of signal
and program qubits, respectively. After some algebra, we
find the effective POVM carried out on the signal qubit,

�0
jj
�

3�
���
3

p

6
1 	

���
3

p

3
j ih j;

�0
? �

3�
���
3

p

6
1 	

���
3

p

3
j ?ih ?j:

(24)

This POVM is symmetric (reflecting the symmetry of the
program j ij ?i). The fidelity F� � is state independent
and equal to the mean fidelity

F0 �
1

2

�
1	

1���
3

p

�
: (25)
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FIG. 1. Quantum circuit representing simple programmable
multimeter: H—Hadamard gate; F—Fredkin gate.
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Notice that F0 � F?. This is not a mere coincidence; the
optimum strategy for program j ij ?i is to carry out an
optimal estimation of j i and then measure the signal
qubit in the basis formed by estimated state j esti and its
orthogonal counterpart. The POVM (22) is an explicit
implementation of this procedure. We emphasize here
that F0 is a maximum fidelity attainable with program
j ij ?i, because the corresponding CP map solves the
extremal equations (10) and (11). With the program j ij i
we achieve the fidelity 5=6 � 0:8333 which is higher than
F0 � 0:7886; hence the program j ij i exhibits better
performance than j ij ?i.

It is important that the proposed universal measure-
ment devices can be realized experimentally. As an ex-
ample, we now describe a possible realization of the
simplest one that uses a single-qubit program register.
Such a device can be built up from one Fredkin (con-
trolled swap) and two Hadamard gates [12] as shown in
Fig. 1. Signal and program enter the Fredkin gate as
‘‘controlled’’ qubits; the result can be read out from the
ancilla serving as a ‘‘control’’ qubit. There are several
ways how to implement the presented scheme on real
physical systems [13]. Very recently, an experimental
implementation of the scheme shown in Fig. 1 on an
NMR quantum computer has been reported [14].

There is also a very promising way of the quantum-
optical implementation of the simplest multimeter. For a
single-qubit program, the optimum measurement on the
program and data qubits is the projection onto symmetric
and antisymmetric subspaces spanned by singlet and
triplet Bell states, respectively. The incomplete Bell state
analysis distinguishing between triplet and singlet polar-
ization states of two photons can be performed with just a
single beam splitter and two photodetectors [15–17].
These kinds of measurements have already been success-
fully carried out in the experiments on dense coding [18]
and quantum state teleportation [19]. This simple optical
scheme has recently been implemented experimentally in
our laboratory [20].

In summary, we have investigated the quantum multi-
meters that can approximate any projective measurement
on a single qubit. The main feature of the multimeters is
that the measurement basis is selected by the quantum
state of the program register. We have considered two
different kinds of programs encoding the basis
190401-4
fj i; j ?ig: first we have considered the program j i�N

and then the program j ij ?i. In both cases we have
determined the optimal multimeter that maximizes the
average fidelity. Remarkably, it turns out that the program
j ij i leads to higher average fidelity than j ij ?i.

Generally, one would like to optimize both the pro-
gram and the joint measurement on the program and
signal registers simultaneously in order to determine
the truly optimal multimeter. This seems to be a very
hard but interesting problem that deserves further inves-
tigation. Here we have made the first steps in this direc-
tion. We have introduced covariant multimeters whose
programs are mutually related via unitary transforma-
tions and we have found the truly optimal covariant
multimeter with a single-qubit program register. Fi-
nally, we have pointed out that there is a very simple
quantum-optical implementation of the simplest multi-
meter with a single-qubit program.

In this Letter we have investigated the multimeters that
always provide one of the two possible measurement
outcomes, but errors may occur. Note that, alternatively,
one can consider a probabilistic multimeter that performs
the exact projective measurements but with the probabil-
ity of success lower than 1. Such a multimeter would be
conceptually analogous to the probabilistic program-
mable quantum gates [2–4].
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