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Spin-Zero Sound in One- and Quasi-One-Dimensional 3He
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The zero sound spectrum of fluid 3He confined to a cylindrical shell is examined for configurations
characterizing strictly one-dimensional and quasi-one-dimensional regimes. It is shown that the
restricted dimensionality makes room to the possibility of spin-zero sound for the attractive
particle-hole interaction of liquid helium. This fact can be related to the suppression of phase
instabilities and thermodynamic phase transitions in one dimension.
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It is common wisdom that bulk liquid 3He does not
exhibit longitudinal spin-zero sound. This is an experi-
mental fact whose physical ground, according to Landau’s
theory of Fermi liquids, is the weak attractiveness of the
effective particle-hole (ph) interaction in the spin chan-
nel of bulk helium. Theoretical descriptions of spin-
density fluctuations of finite wavelength, carried within
polarization potential (PP) theory [1], the random-phase
approximation (RPA) in the monopole model [2] and
finite range density functional (FRDF) theory [3] do
support the experimental data. The restriction does not
hold for transverse spin-zero sound (Silin waves), whose
prediction in the late 1950s [4] was experimentally con-
firmed after several years [5]. It has been also shown that
in partially polarized 3He, for any finite value of the
magnetization, the effective ph interaction derived by
double functional differentiation of the FRDF acquires
sufficient repulsive intensity to build up two collective
oscillations of the spin density, both with substantial
strength [6]. This picture is further enriched with the
prediction of a dispersion relation for transverse spin-
zero sound, in the same density functional frame [7].

The purpose of this Letter is to examine a dimension-
ality effect which may show up in one- and quasi-one-
dimensional (1D and Q1D) confinements, as those taking
place in the adsorbing field of a curved surface such as a
graphite nanotube [8] or another cylindrical pore. It will
be shown that stable spin oscillations of the zero sound
type may take place in 1D and Q1D 3He, and that this
possibility is related to a feature of the free Lindhard
function as spatial dimensions are suppressed. In the
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cylindrical environment, the wave functions of free 3He
quasiparticles (qp’s) take the form

�kl�r� �
1����������
2�R

p f0�r�ei�kz�l’�: (1)

Here R;L, (R� L) are the radius and length of the
cylinder, and f0�r� is the ground state for the transverse
radial motion. For strong adsorbing potentials, the latter
is narrow enough to be represented as a delta function
restricting the atoms to the cylindrical surface, and the
first radial excited state lies much higher than the thresh-
old for angular motion, "1 � �h2=�2mR2� (see, e.g.,
Ref. [9]). The wave function (1) corresponds to a band
spectrum "kl � �h2k2=2m� "l, being "l � "1l

2, which
according to Fermi statistics, at zero temperature is popu-
lated up to a Fermi energy "F related to the linear atom
density by

�1 �
N
L
�

2

�

X
l

kFl	�"F � "l�; (2)

where kFl �
�����������������������������������
2m �"F � "l�= �h2

p
is the Fermi momentum

for each occupied angular momentum band (hereafter, a
Fermi segment), and 	�x� is the step function. Thus, as
linear density increases, the gas of qp’s experiences a
crossover between the strictly 1D and the 2D geometries,
through a Q1D regime which takes place when a few
Fermi segments of length 2kFl are populated.

For this noninteracting gas, the 1D Lindhard function
at zero temperature reads [10]
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1D 2
where �F � m=�2� �h kF� is the 1D density of states at the
Fermi level per spin degree of freedom, and

!
 � 

�h

2m
q2 � qvF: (4)

The real part of this response is regular within the ph
band !� � ! � !� and diverges at the edges, while the
strength on the 1D-ph continuum S0 � �Im�0=� is a
constant equal to �1DF kF=q for energies belonging to the
ph band. For very small q, S0 becomes

S0 � �1DF kF��!� qvF�; (5)

which is the characteristic Luttinger liquid behavior [11].
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FIG. 1. Dynamical susceptibility of a 1D Fermi gas as a
function of reduced energy for finite transferred momentum
q � kF. Full and dashed lines, respectively, correspond to
�Im�1D
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FIG. 2. Same as Fig. 1 for a 2D and a 3D Fermi gas (thick and
thin lines, respectively) at transferred momentum q � 2:3kF.
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FIG. 3. The real (upper frame) and imaginary (lower frame)
parts of the dynamical response of a Fermi gas in the Landau
limit as a function of the reduced phase velocity. Full, dot-
dashed, and dashed lines, respectively, correspond to the 1D,
2D, and 3D cases.
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This susceptibility is displayed in Fig. 1 for finite
transferred momentum q. The real part presents opposite
signs on either side of the nonvanishing continuum
strength, which opens the possibility, for attractive effec-
tive interactions Vph�q;!�, of generating low energy col-
lective oscillations, i.e., to satisfy the simple RPA
dispersion relation in the monopolar approximation

"�q;!� � 1� Vph�q;!��
1D
0 �q;!� � 0: (6)

In fact, such a possibility may occur in higher dimen-
sional, homogeneous 3He. The concentration of contin-
uum ph strength between two finite, positive energy
edges is a well-known property of 2D and 3D Fermi gases
for transferred momentum larger than 2kF. This is de-
picted in Fig. 2, where the real and imaginary part of the
2D and 3D dimensionless Lindhard functions are plotted
for q � 2:3kF. We realize that in the low energy region
!<!�, the dielectric function "�q;!� in Eq. (6) may
vanish for a negative value of Vph such that �DF jVphj > 1.
However, this is an undesirable situation, since the fluid
would be unstable against such oscillations.

The evolution of the Lindhard function with decreasing
dimension is more clearly visualized in the Landau limit;
i.e., both q and ! approach zero with finite reduced phase
velocity s � !=qvF, jsj � 1. This is shown in Fig. 3,
where the real and imaginary parts of the dimensionless
Landau susceptibilities �D

0 �s� � � limq;!!0 �D0 =�
D
F are

displayed as functions of s for D � 1 to 3, with D � 1
corresponding to the Luttinger liquid [11].

Two facts are visible in this picture. First, we appreciate
the progressive expulsion of low energy continuum
strength towards the Fermi surface, due to the reduction
in ph momentum space associated to the suppression of
one or both angular degrees of freedom. Second, we
realize that in the 1D geometry, while a repulsive inter-
action always gives rise to a collective oscillation above
185301-2
the ph continuum, stable low energy collective poles may
also appear for sufficiently weak attraction, �DF jVphj< 1.
This is possible due to the change in curvature of Re�D

0 at
the origin.

To fix ideas, hereafter I focus on a specific, although
largely simplified, description of 3He bound to a cylin-
drical surface of radius R at given linear density �1. I
have chosen to take into account the gross features of ph
185301-2
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FIG. 4. The dispersion relation for the low and high energy
collective modes of 1D 3He quasiparticles at �1 � 0:1 �A�1.
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propagation in either the symmetric (s) or the antisym-
metric (a) spin channel by means of polarization poten-
tial theory [1]. In other words, the spectrum of collective
excitations is given by Eq. (6) with an effective qp inter-
action

Vph�q;!� � f$�q� � �!q�
2h$�q�; (7)

where $ stands for s or a, f$�q� is the monopolar self-
consistent field, which at infinite wavelength provides the
monopole Landau parameter F$0 , and h$�q� incorporates
backflow effects so as to account for the momentum-
dependent effective mass and for the magnetic Landau
parameter Fa1 .

In the present model, the restricted geometry has been
incorporated as follows. The self-consistent fields are the
projections of the spatial pseudopotentials [1] onto the
components ei�kz�l’� of the excitation operator. In Ref. [12]
the backflow field hs is parametrized as a function of
transferred momentum and ha is a constant in momentum
space. These fields have been Fourier antitransformed in
3D to obtain their spatial representation. Note that
the particles see each other in three-dimensional space,
i.e., the distance between interacting qp’s is r �
�4R2sin2�’=2� � z2	1=2. The parameters and strengths
are taken at bulk saturation [12]. In fact, although mean-
ingful linear densities for the fluid under consideration
correspond to 3D figures well below saturation, PP’s are
not known for such dilute systems. Several questions may
be raised concerning the validity of the picture itself; one
could reasonably expect that core suppression—an essen-
tial ingredient in pseudopotential theory—is sensitive to
dimensionality. Indeed, a reduction in the number of
nearest neighbors of an atom would remove short-range
screening and enhance the strength of the repulsion, thus
of the attraction in the spin channel. Although apparently
this issue has not been explored yet, it is plausible that the
qualitative features to be discussed below are robust
against fine improvements in the effective ph interaction,
for the particular restricted geometry here adopted.

As a first illustration, a cylindrical shell of 3He atoms
with radius R � 4 �A and linear coverage �1 � 0:1 �A�1 is
investigated. Taking into account the backflow field hs�q�,
the momentum-dependent effective mass is, in 1D,

m�
q � m� �1hs�q�: (8)

This formula generalizes in a straightforward manner the
expression derived in 3D PP theory [1]. One finds m�

0 �
1:29m, m�

q approaching unity monotonically with in-
creasing momentum. For this cylinder, the threshold "1
for angular momentum excitations is 0.5 K if the bare 3He
mass is considered. The momentum dependence of the
effective mass permits to push the first bandhead down-
wards to 0.38 K; however, within a sizeable range of
wavelengths, this band never becomes populated for lin-
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ear densities below 0:1 �A�1, and the system remains 1D.
The dispersion relations numerically obtained solving
Eq. (6) are displayed in Fig. 4, where we can appreciate
that in addition to the density-zero sound mode, which
departs from the ph continuum with phase velocity
around 3:4vF, a low energy spin-density oscillation ap-
pears, which evolves into a damped rotonlike minimum
at a transferred momentum near 0:45 �A�1. The phase
velocity of this second mode, which in addition, carries
collective strength around 10 times that of the density-
density mode, is about one half the Fermi velocity.

For higher coverages, one cannot expect a single shell
monolayer for the adsorbed fluid. However, in a wider
pore the angular spectrum may become sufficiently com-
pressed, so that the fluid shell covers more than one Fermi
segment and can be regarded as a Q1D system. Even for a
nanotube of standard size, say, around 7 Å, the gas ad-
sorbed on the outer surface would lie at a radius near 10 Å,
which makes room to significant Q1D structure and ther-
modynamics even at coverages slightly above 0:1 �A�1.
The Lindhard function for Q1D systems has been antici-
pated in Ref. [13] and a complete survey of results is
presented in Ref. [14].

A situation with two populated Fermi segments, cor-
responding to R � 10 �A and �1 � 0:11 �A�1, permits a
qualitative illustration of the Q1D response. Figure 5
shows the longitudinal Q1D Lindhard function, for l �
0 and transferred momentum q � 0:05 and 0:12 �A�1; it
permits a previous guess of the multiplicity of the collec-
tive spectrum, which is portrayed in Fig. 6, together with
the edges of the two ph continua. The largely reduced
scales, as compared to those in Fig. 4, are chosen to
display the two undamped modes which lie between the
two neighboring 1D continua, the lower (higher) energy
one corresponding to a density (spin-density) fluctuation.
This kind of spectrum has been already found in the
case of adsorbed quasi-two-dimensional 3He [15], for
185301-3
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FIG. 6. Dispersion relations for Q1D 3He quasiparticles.
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FIG. 5. Free susceptibility of Q1D 3He quasiparticles for
transferred momentum q � 0:05 �A�1 (upper panel) and
0:12 �A�1 (lower panel).
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density-zero sound modes. It can be verified that the
density oscillation of higher energy persists up to sizeable
momentum; near 1 �A�1, this mode departs from the
linear dispersion relation and approaches the continuum
edge so as to mimic the 2D trend [10].

The purpose of this work is to call attention to a
dynamical manifestation of reduced dimensionality
which may be linked to the suppression of thermody-
namic phase transitions in one dimension; in this sense,
experimental verification remains the key to further
understanding and completion of physical insight. It
should be kept in mind that the calculations here pre-
sented are model dependent; the choice of the single
particle spectrum, of the effective ph interaction, and
of the values of the force parameters may modify the
shape of the dispersion relations, the values of the phase
velocities of the density and spin modes, and the phonon-
maxon-roton appearance of the 1D spin dispersion.
Further research investigating the properties of 3He ad-
sorbed in cylindrical environments would shed light on
the robustness of these quantitative results.
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