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Energy Spectrum of Quasigeostrophic Turbulence
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We consider the energy spectrum of a quasigeostrophic model of forced, rotating turbulent flow. We
provide a rigorous a priori bound E�k� � Ck�2 valid for wave numbers that are smaller than a wave
number associated with the forcing injection scale. This upper bound separates this spectrum from the
Kolmogorov-Kraichnan k�

5
3 energy spectrum that is expected in a two-dimensional Navier-Stokes

inverse cascade. Our bound provides theoretical support for the k�2 spectrum observed in recent
experiments.
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by quasigeostrophic equations [3], which are quasi-two-
dimensional equations asserting the conservation of po-

k
Thus, for each wave number
The typical time scales associated with atmospheric
flow over long distances are much bigger than the time
scales associated with Earth’s rotation. This low Rossby
number situation is characterized by a relative suppres-
sion of momentum transfer across vertical scales, and the
organization of the flow in quasi-two-dimensional strata.
Cyclonic and anticyclonic vortical motion ensues in these
layers, with dynamics in which strong, interacting vorti-
ces of many sizes are born, grow, and dissipate, over time
scales that are long compared to the rotation time scale.
The precise mathematical way of describing such a quasi-
two-dimensional picture is yet unclear. Energy spectra
are some of the most robust quantitative indicators that
one can use in order to distinguish between different
classes of models. If a strictly two-dimensional Navier-
Stokes framework is adopted for rotating turbulence, then
the predicted energy spectra are a k�3 direct enstrophy
cascade (at wave numbers larger than the wave number of
the forces stirring the fluid) and a Kolmogorov-
Kraichnan k�

5
3 inverse energy cascade spectrum at wave

numbers that are smaller than the forcing wave numbers
[1]. Recent experiments [2] of rotating fluids find a differ-
ent inverse energy cascade power spectrum: E� k�2.
This spectrum implies a steeper inverse energy cascade
than the one predicted by a strictly two-dimensional
Kolmogorov-Kraichnan spectrum. The k�2 spectrum
was observed for wave numbers of 10�1–100 cm�1. The
experimental data showed the steeper k�2 spectrum
clearly separated from a k�

5
3 spectrum that was fit to

agree with E�k0� at the largest scale k0 � 10�1 cm�1.
The purpose of this Letter is to describe a rigorous upper
bound E�k� � Ck�2 valid in the inverse cascade region, in
a quasigeostrophic regime.

The most important feature of strongly rotating fluids
is the geostrophic balance between the Coriolis force and
pressure gradients. This balance, valid only in a first
approximation, imposes a two-dimensional time inde-
pendent solution. The departure from this balance, to
lowest order, has nontrivial dynamics and is described
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tential vorticity q subject to dynamical boundary condi-
tions. In general quasigeostrophic equations, the potential
vorticity q is advected by a a three-dimensional velocity
field that can be derived from a stream function  . The
velocity has no vertical component v � �u; v� �
��@y ; @x �. The potential vorticity q is advected fol-
lowing horizontal trajectories, @tq� v � rq� v � F,
where F includes sources and damping. The potential
vorticity and the stream function are functions of three
space variables �x; y; z�; the relation q � �@xx � @yy �
@zz� closes this equation. The boundary conditions at
z � 0 are (1) below with � � @z . One decomposes  �
 B �  N in a sum of a harmonic function  B, �@xx �
@yy � @zz� B � 0, @z Bj z�0 � �, and a function that sat-
isfies homogeneous Neumann boundary conditions,
�@xx � @yy � @zz� N � q, @z Nj z�0 � 0. The ensuing
equations on the boundary can be analyzed, using proper-
ties of the smooth evolution of q. The boundary condition
can be written as

@t�� v � r�� wE�� � f: (1)

The dissipative term wE�� has a coefficient wE > 0 that
comes from Ekman pumping at the boundary. This co-
efficient has units of velocity and, for the situations we
consider, where a nontrivial vertical flux is imposed, this
coefficient is not vanishingly small. (In the experiment
[2] the vertical velocities at the boundary are close in
magnitude to the maximal measured velocities and are in
ranges of about 20–30 cm=s; the value for wE is expected
to match the same order of magnitude.) The operator �
can be described in Fourier representation as multiplica-
tion by the magnitude k of the wave number k � �kx; ky�;
that is,

c�����k; t� � kb���k; t�: (2)

In this Letter we concentrate on the dynamical effect of
 B. Neglecting the effect of  N , the velocity is related
to � by

bvv�k; t� � ��ky; kx�

�������
�1

p b���k; t�: (3)
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jb���k; t�j � jbvv�k; t�j: (4)

The symbol f refers to the forcing term. This active scalar
surface quasigeostrophic equation has been studied both
analytically and numerically [4].

We will analyze the energy spectrum using the
Littlewood-Paley decomposition [5]. The Littlewood-
Paley decomposition is not orthogonal, but it is nearly
so. Its use affords great flexibility in dealing with func-
tions that involve many active scales: wave numbers are
grouped in dyadic blocks and averages over the dyadic
blocks are performed. The Littlewood-Paley decomposi-
tion is defined in terms of a smooth partition of unity in
Fourier space. This partition is constructed starting from
a non-negative, nonincreasing, radially symmetric func-
tion ��0��k� � ��0��k�, which equals 1 for k � 5

8 k0 and
vanishes for k � 3

4 k0. The positive number k0 is just a
reference wave number that fixes units. The argument of
this template function is then dilated, setting ��m��k� �
��2�mk� and then the template is differenced, setting
 �0��k� � ��1��k� ���0��k�, and then  �m��k� �
 �0��2

�mk� � ��m�1��k� ���m��k� for all integers m.
The functions  �m��k� are identically one for k 2
�34 2

mk0;
5
4 2

mk0� and vanish outside the interval

�58 2
mk0;

3
2 2

mk0�. (They should not be confused with
stream functions.) The relationship 1 � ��m��k� �P

1
n�m  n�k� holds for any integer m. One defines the

Littlewood-Paley operators S�m� and �n as multiplication,
in Fourier representation, by��m��k� and, respectively, by
 �n��k�. Symbolically this means that the identity opera-
tor is written as I � S�m� �

P
1
n�m�n. The Littlewood-

Paley decomposition of a function F is F � S�m�F�P
1
n�m�nF. For mean-zero functions that decay at infin-

ity, the terms S�m� become negligible when m! �1 and
therefore, for such functions one can write F �P

1
n��1 �nF. It is easy to see that for each fixed k > 0

at most three �n do not vanish in their Fourier represen-
tation at k (i.e., the conditions k 2 �58 2

nk0;
3
2 2

nk0� can be
satisfied by at most three integers n, because n 2 ��1�
log2�

k
k0
�; 1� log2�

k
k0
��). The operators S�m� and �n can be

viewed as convolution operators. In particular, for every
n � �1;�2; . . . , �n �

R
dh��n��h��h. Here ��n� is the

function whose Fourier transform is  �n�, b���n� �  �n�,
and �h is the finite difference operator, ��hF��r� �
F�r�h��F�r�. Thus �n is a weighted sum of finite
difference operators at scale 2�nk�1

0 in physical space
[k�1

0 provides thus an (arbitrary) length unit].
The Littlewood-Paley decomposition of the solutions

of the quasigeostrophic equation is performed at each
instance of time, ��r; t� �

P
1
n��1 ��n��r; t�. We wrote for

ease of notation ��n� instead of �n�; thus, ��n��r; t� �R
dh��n��h��h����r; t�. The finite difference is taken at

equal times, �h����r; t� � ��r� h; t� � ��r; t�. There is
an analogous decomposition for the velocity v and the
forcing term f. In particular, in Fourier variables, the
184501-2
Littlewood-Paley components of v are given bybvv�n��k; t� �  �n��k�bvv�k; t�. The Littlewood-Paley spec-
trum [6] is

ELP�k� �
1

k

X
�2�log2�

k
k0
��n�2�log2�

k
k0
�

hjbvv�n��k; t�j2i; (5)

where h. . .i is space-time average. This represents the
mean-square average of the components v�n� associated
to the scale k. The Littlewood-Paley spectrum is closely
related to a shell average of the traditional energy spec-
trum. If l is a wave number whose magnitude l is com-
parable to k, k2 � l � 2k, then

bvv�l; t� � X
�2�log2�

k
k0
��n�2�log2�

k
k0
�

bvv�n��l; t� (6)

holds, because the entire range of values n for whichbvv�n��l; t� � 0 is accounted for: ��1� log2�
l
k0
�; 1�

log2�
l
k0
�� � ��2� log2�

k
k0
�; 2� log2�

k
k0
��. Using the

Schwartz inequality and integrating on the shell k2 � l �
2k, it follows that the usual energy spectrum

E�k� �
Z
l�k

hjbvv�l; t�j2idS�l� (7)

satisfies

1

k

Z 2k

k
2

E�l�dl � 5ELP�k�: (8)

Clearly, because the functions  �n� are non-negative,
bounded by 1, and supported in � 532 k; 6k�, one has also

ELP�k� �
5

k

Z 6k

5k
32

E�l�dl: (9)

The temporal evolution of the system induces an
evolution

@t��n� � v � r��n� � wE���n� � R�n�; (10)

where

R�n� � f�n� �
Z
dh��n��h�rh � ��h�v��h�� (11)

and f�n� is the Littlewood-Paley component of the forcing
term. Multiplying (10) with ��n� and taking space-time
average, one obtains the balance

wEkhjb���n��k; t�j2i � hR�n��r; t���n��r; t�i: (12)

Let us consider the case when the forcing term has
limited support in Fourier space, bff�k; t� � 0 for k =2
�ka; kb�, with 0< ka < kb <1. The inverse cascade re-
gion will be described by wave numbers smaller than the
minimal injection wave number ka. The inverse cascade
region corresponds thus, in the Littlewood-Paley decom-
position, to indices n > �1 that satisfy 2n�1k0 < ka. We
show now that the right-hand side of Eq. (12) is bounded
184501-2
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above, uniformly for all such n > �1. Because we are in a region where f�n� � 0, the term on the right-hand side of
(12) can be written, after one integration by parts, as

hR�n��r; t���n��r; t�i � �
Z
dhrh��n��h�h�h�v��r; t��h����r; t���n��r; t�i: (13)

This is a weighted sum of triple correlations. We will

analyze each of the three terms involved in it, in an
elementary but rigorous fashion. Because we aim at an
upper bound, we will not try to optimize the prefactors.
Using the Fourier inversion formula

��n��r; t� � �2$��2
Z
dkeir�k �n��k�b���k; t�;

the term ��n� is bounded pointwise by applying the
Schwartz inequality:

j��n��r; t�j � �2$��2jj �n�jj jjb��jj; (14)

with jj � � � jj the mean-square norm. Using the fact that
 �n� is a dilate of  �0�, we get

j��n��r; t�j � c 2nE�t�
1
2; (15)

where c2 � �2$��2
R
dkj �0��k�j2 and E�t� �R

drj��r; t�j2 �
R
drjv�r; t�j2 is the instantaneous total

energy. In the equality above we used Plancherel’s identity
jjFjj � �2$��1jjbFFjj, and (4). In order to bound the
other two terms we note that, from Plancherel, we haveR
drj�h��r; t�j2 � �2$��2

R
dkje�ih�k � 1j2jb���k; t�j2.

Using je�ih�k � 1j2 � 4hk, we deduceZ
drj�h��r; t�j2 � 4h)�t�; (16)

where )�t� �
R
dr��r; t����r; t�. The term involving �hv

is bounded using the same argument. In view of (4), the
bound is by the same quantity:Z

drj�hv�r; t�j2 � 4h)�t�: (17)

Putting the three inequalities (15)–(17) together with the
Schwartz inequality, we deduce that the triple correlation
term that is integrated in (13) obeys

jh�h�v��r; t��h����r; t���n��r; t�ij � 4c 2nhhE�t�
1
2)�t�i:

(18)

In view of the fact that the functions ��n� are dilates of a
fixed function, we deduce that

jhR�n��r; t���n��r; t�ij � 2n�1C )E
1
2: (19)

Here E is the maximum total (not per unit volume)
kinetic energy on the time interval, E � supt E�t�. The
constant

C � 2c 
Z
dhhjrh��0�j � c0k0 (20)

is proportional to k0 and depends on the choice of the
Littlewood-Paley template  �0� only through the nondi-
184501-3
mensional positive absolute constant c0. The number

) � h)�t�i

is related to the long time dissipation. It can be bound in
terms of the forcing term using the total balance

1

2

d
dt
E�t� � wE)�t� �

Z
drf�r; t���r; t�;

which follows from (1) after multiplication by � and
integration. Writing the integral in Fourier variables
and using the fact that the support of the forcing is
bounded below by ka > 0 one obtains the bound

) � w�2
E k�1

a hjf�r; t�j2i: (21)

This bound diverges for very large scale forcing, i.e.,
when ka ! 0. Nevertheless, because of the presence of
the coefficient 2n�1 in (19) and the fact that 2n�1k0 � ka
in the inverse cascade region, the total bound on the
spectrum does not diverge as ka ! 0: inserting (21) in
(19) and using (20) we get

jhR�n��r; t���n��r; t�ij � c0w
�2
E E

1
2hjf�r; t�j2i: (22)

Now, using (22) in (12) and recalling the definition (5) we
obtain

ELP�k� � Ck�2 (23)

for all k < ka. This is the main result of this Letter. The
constant has units of length per time squared and is given
by

C � c0E
1
2w�3

E hjf�r; t�j2i: (24)

The upper bound proved in this Letter holds in greater
generality than presented here. First of all, the spectrum
of the forces need not be confined to the band �ka; kb�.
The role played by �ka�

�1 is then played by the ratio
hk�1jbff�k; t�j2ifhjbff�k; t�j2ig�1. Second, the results and
methods apply to a much wider class of quasigeostrophic
equations, particularly to situations in which  N adds a
smooth nonvanishing contribution.

Two main ingredients were used in the proof. The first
one is the way in which the spectrum of � is related to the
energy spectrum (4). This balance is modified when con-
tributions coming from  N are added, but unless singu-
larities are allowed in the potential vorticity q, the
modifications do not affect qualitatively the upper bound.
The second, and the essential, ingredient in the proof is
the fact that the relaxation time at wave number k is
roughly �wEk��1 in the range of wave numbers consid-
ered. This dependence is an important by-product of the
quasigeostrophic model. In contradistinction with direct
cascade models where there is a dissipation anomaly, in
184501-3
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the quasigeostrophic models the coefficient wE is not
vanishingly small. Moreover, the physical forcing ampli-
tude obtained from an Ekman boundary layer is propor-
tional to wE. The explicit presence of the large scale term
E

1
2 in the prefactor C is a reflection of the fact that the k�2

spectrum is modified near k � 0. The same is true for the
Kolmogorov-Kraichnan spectrum: the integrals diverge
and require an infrared cutoff. Such a cutoff can be
achieved mathematically in two different ways. One
may impose a smallest wave number kmin and boundary
conditions; or one can modifiy the dissipation law so that,
in the limit k! 0, one has a finite relaxation time. In
either case one can prove an a priori upper bound on E
depending on the forcing and dissipation mechanism. The
fact that the large scales are nearly conservative, with
finite energy, was used in [2] to compare the k�2 and k�

5
3

spectra with the same largest scale energy. Our upper
bound (23) confirms theoretically the separation of the
two spectra when the injection length scales are small
enough. This is indeed the case in the experiment [2]:
forcing was applied through 120 holes of diameters of
0.25 cm, some 8 times larger than the Ekman boundary
layer length.

In summary, we have proved that the energy spectrum
of a forced surface quasigeostrophic equation is bounded
above byCk�2 for wave numbers that are smaller than the
force’s injection wave number. Such a bound distinguishes
the quasigeostrophic model from a two-dimensional
184501-4
Navier-Stokes model and agrees with the recent experi-
mental evidence of [2].
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