
VOLUME 89, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 28 OCTOBER 2002
Statistics of Branched Flow in a Weak Correlated Random Potential
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Recent images of electron flow through a two-dimensional electron gas device show branching
behavior that is reproduced in numerical simulations of motion in a correlated random potential [M. A.
Topinka et al., Nature 410, 183 (2001)]. We show how such branching arises from caustics in the classical
flow and find a simple scaling behavior of the branching under variation of the random potential
strength. Analytic results describing statistical properties of the branching are confirmed by classical
and quantum numerical tests.
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wave model [7]. The related problem of the effect of orbit
bifurcations on chaotic wave functions is also a research

classical or quantum y evolution may be discretized
on a scale �t � �x � 1. The initial condition is zero
In the past decade, advances in the fabrication and
study of mesoscopic structures have led to the observation
of many novel phenomena, and a fruitful interaction has
resulted with simultaneous theoretical progress in the
areas of random matrix theory, quantum chaos, and dis-
ordered systems. Phenomena that have received much
attention include universal conductance fluctuations and
weak localization in open quantum dots, and the statistics
of conductance peak spacings and heights in the Coulomb
blockade regime [1].

Recently, scanning probe microscope technology has
allowed for the imaging of current flowing in a two-
dimensional electron gas device [2]. After the electron
current passes through a narrow quantum point contact,
the flow shows a striking branchlike behavior [3]. The
qualitative features of the observed branching pattern are
well reproduced in numerical simulations of quantum
wave evolution through a correlated random potential,
when the rms potential height and the correlation length
of the potential are set at their experimentally measured
values. Perhaps more surprisingly, the same branches are
observed in the corresponding classical simulation, in-
dicating that the experimental phenomenon has a classi-
cal explanation. However, the simulations show that the
branches do not correspond to valleys in the random
potential. Instead, it was suggested that branches may
arise from caustics in the classical flow.

We emphasize that the problem of wave flow through a
correlated random potential is of general interest and not
restricted to the mesoscopic context. For example, similar
effects of caustics have been discussed recently in the
context of long-range sound propagation through the
ocean [4]. We also note that the influence of caustics on
waves in random media has been studied as far back as
1977 by Berry [5], who analyzed the moments of the
intensity distribution. In closed fully chaotic systems,
self-focal points lying on periodic orbits [6] are the
source of the most dramatic departure of wave function
intensity statistics from the predictions of the random
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area of continuing interest [8]. Accordingly, our goal here
is not only to make contact with one particular experi-
mental observation but also to make progress more gen-
erally in exploring this regime of classical and quantum
chaotic behavior.

In the present work, we extend the previous qualitative
understanding of branching behavior, arriving at analy-
tical results to be compared with numerics and ultimately
with experiment. We focus on propagation in a two-
dimensional potential, though the methods apply as
well to the three-dimensional case (where branches are
replaced by caustic surfaces) and to related problems such
as light propagation through a medium with varying
refractive index. We concentrate throughout on generic
patterns and not on rare events that would occur only in a
few realizations of a random ensemble.

Our starting point is a Gaussian-distributed random
potential V�x; y� with a Gaussian correlation function,

V�~rr� � 0; V�~rr�V�~rr0� � v2
0e

�j~rr�~rr 0j2=
2 : (1)

Without loss of generality, we will use units in which the
correlation scale 
 � 1; similarly, the mass and the initial
momentum, taken to be in the x direction, are set to unity.
To prevent backscattering and localization on a scale of
order 
, we must require the random potential to be weak
relative to the initial kinetic energy, v0 � EF � 1=2. In
the experiment [3], v0=EF � 0:08, and all our subsequent
analytical expressions are computed to leading order in
v0; however, the results turn out to be qualitatively and
even in some respects quantitatively valid for v0=EF �
0:3 and higher. In this approximation, then, the motion is
unidirectional: px�t� � px�0� 	 1, x�t� � t, and

dy�t�=dt � py�t� ; dpy�t�=dt � �@V�t; y�=@y: (2)

In other words, the two-dimensional dynamics reduces
to one-dimensional evolution in the transverse dimension
y, under the influence of an effectively time-varying
random potential [9]. For numerical purposes, the above
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transverse momentum; classically, it is the manifold
py � 0 in the y� py phase space.

Stretching and folding of this initial manifold under
classical evolution in t (or x) produces simple caustics, or
folds, where �py�t�=�y�0� � 1 and the classical intensity
in position space diverges [10]. By calculating how long it
takes for a trajectory to travel a distance of one correla-
tion length in the transverse y direction, we may easily
check that this stretching and folding occurs in the clas-
sical dynamics on the characteristic time scale,

t0 	 v�2=3
0 � 1; (3)

i.e., when the potential is weak, a trajectory must pass
over many correlation lengths of the potential in the
longitudinal (x) direction before caustics arise. In the
following, we eliminate the explicit dependence of
branching statistics on the random potential strength v0

by expressing all results in terms of the scaled time t=t0.
For t=t0 > 1, the transverse stretching factor defined as

s 	 �y�t�=�y�0� develops a log-normal distribution,

lnP�s� � �
�lns� �t=t0�

2

�t=t0
; (4)

where the exponent � is a dimensionless Lyapunov
exponent, lns � �t=t0, while � characterizes the inho-
mogeneity of the stretching, �� lns�2 � ��=2�t=t0. The
log-normal distribution for s may be thought of as arising
from a product of monodromy matrices, whose logarithm
behaves as a sum of random variables [4]. For v0 � 1, �
and � may be computed analytically up to integration
[11]; in the figures, we use values obtained numerically
for finite v0 via numerical simulation. The average
amount of stretching in the y direction of an infinitesimal
piece of the initial manifold grows exponentially with
time as

s � �y�t�=�y�0� � e��
�=4�t=t0 : (5)

Since folds in the classical manifold typically develop
when �y� 
 � 1, the number of caustics also grows
exponentially with time as

Ncaus �We��
�=4�t=t0 ; (6)

where W is the length in the y direction of the initial
manifold, i.e., the transverse width of the system in units
of the correlation length. The scaling (6) has been
checked numerically using several values of the random
potential strength v0.

Because the classical density of trajectories diverges at
a caustic, we must perform smoothing of intensity on
some scale b � 1 in the transverse y direction in order
to obtain a well-defined branch height. In quantum me-
chanics, such smoothing is taken care of automatically by
the uncertainty principle, since caustics cannot be re-
solved when the phase space area enclosed by the fold is
below �h, and thus beff � �h2=3 (see below). We also adopt
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the convention that the initial classical or quantum den-
sity is normalized to unity.

When a caustic forms at time tform and transverse
position y, the classical b smoothed intensity Ib�tform; y�
of the resulting branch scales as

Ib � b�1=2�s�0; tform���1; (7)

where s�0; tform� is the stretching factor between time 0
and time tform of the piece of the manifold in which the
fold occurs. Away from caustics, the intensity scales
simply as Ib � �s�0; t���1. The extra factor of b�1=2 in
Eq. (7) ensures that, for small b (corresponding to the
semiclassical or ray limit of the original quantum or wave
problem), caustics always dominate the tail of the inten-
sity distribution, as we have confirmed numerically.

Using the typical behavior of the stretching factor s
[Eq. (4)], we now immediately see from Eq. (7) that, for
��1 < tform=t0 <

1
2�

�1 lnb�1, every caustic leads to a
visible branch, with intensity Ib � 1. Once a given
branch forms, its intensity immediately begins to decay
(though at a slower rate) due to further stretching:
Ib�t; y� � b�1=2�s�0; tform��

�1�s�tform; t��
�1=2, eventually

vanishing into the background on a logarithmic time
scale t=t0 � ��1 lnb�1 � 1. The number of visible
branches reaches its peak value of Nbr �Wb�1=2 at the
time scale t=t0 �

1
2�

�1 lnb�1.
At longer times, t=t0 >

1
2�

�1 lnb�1, it is no longer true
that a typical new caustic results in a visible branch, since
the resulting smoothed intensity is generally below the
level (Ib � 1) of the random background. Thus, at these
longer times, branches appear only at caustics that are
formed from pieces of the manifold that have experienced
anomalously little stretching compared with the average
behavior. The number of such visible branches may be
easily estimated by first calculating the number of caus-
tics coming from those regions of the manifold that have
stretched by no more than some factor s0 � exp��t=t0�.
This number is given by the product of the manifold
fraction that has stretched by less than s0 and the number
of caustics per unit length resulting from that stretching:

ln
Ncaus
s<s0

W
�

��lns0 � �t=t0�
2

�t=t0

 lns0: (8)

Inserting the maximal stretching factor s0 �
e�const=2�b�1=2 that will still allow a newly formed caustic
to produce a visible branch, we obtain, for
t=t0 >

1
2�

�1 lnb�1,

ln
Nbr

W
�

�
 2�
2�

�lnb�1 
 const� �
�2

�
t
t0

O

�
t0
t

�
: (9)

Thus, after a rapid initial climb, the number of branches
falls off exponentially with scaled time t=t0, at the rate
�2=�. The inherent ambiguity in defining how high a
branch must be above the background to be visible can be
184103-2
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FIG. 1. Number of visible branches as a function of dimen-
sionless scaled time t=t0, where the characteristic time scale t0
depends on the strength v0 of the random potential, Eq. (3). A
visible branch is defined as an intensity enhancement of at least
a factor of 10 above the background. The two dashed curves
correspond to different values of the smoothing length b. The
solid line represents the predicted exponential falloff at long
times [Eq. (9)], with slope �2=� � 0:30 (� � 0:65, � � 1:42).
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absorbed into a multiplicative constant in Nbr and does
not affect the falloff rate.

Numerical results are presented in Fig. 1. In this figure
and throughout, a single realization of the random en-
semble is used for each data curve, without ensemble
averaging.

In the experimental electron flow images [3], the few
longest and most intense branches are the most visually
striking. Let us therefore focus on the maximum branch
intensity Imax

b as a function of scaled time t=t0. This from
Eq. (7) is simply b�1=2 divided by the minimum stretching
factor, which is immediately found by setting Ncaus

s<s0 � 1
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FIG. 2. Exponential falloff of maximum branch intensity
Imax
b with scaled time t=t0. The three dashed curves correspond

to classical simulations for several values of v0 and smoothing
scale b, and the solid curve is a quantum calculation. The
power-law dependence of Imax

b on b confirms that the peaks
arise from simple caustics (folds). Finally, the straight line cor-
responds to the theoretical prediction of Eq. (10), with analy-
tically predicted exponent � � 0:17 (� � 0:65, � � 1:42).
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in Eq. (8) and solving for lns0. We obtain

lnImax
b �

1

2
lnb�1 � �

t
t0
;

� � ��
�
2

0
@ ���������������

1

4�
�

s
� 1

1
A: (10)

This predicted exponential falloff of Imax
b with t=t0 is

confirmed in Fig. 2. We note the correct scaling behavior
of the maximum intensity for different values of the
potential strength v0 and different smoothing lengths b,
as well as good agreement between the theoretically
predicted and numerically observed numerical exponent
�. The behavior Imax

b � b�1=2 confirms that the maximum
intensities indeed always come from caustics, which we
have also confirmed by direct examination.

Because of intensity fluctuations within a given branch,
particularly in the quantum case, the fraction of space
covered by branches, fbr, is in practice a more robust
measure than the branch number Nbr [Eq. (9)]. Defining
fbr as the fraction of intensities that exceed some arbi-
trary cutoff Icut, and combining the result of Eq. (10) with
the fact that intensity falls off as the inverse square root of
the distance as we move away from a caustic, one
straightforwardly obtains (since � > 2�)

lnfbr � �2�
t
t0
� 2 lnIcut: (11)

Equation (11) predicts that, irrespective of our defini-
tion of a branch (i.e., choice of Icut), the spatial area
covered by visible branches falls off exponentially with
distance from the starting point, and the exponent is
given by 2�. This behavior is confirmed in Fig. 3 for
several sets of parameters. We note that to leading order
the result does not depend on the smoothing scale b, and
correspondingly on the ratio of wavelength to correlation
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FIG. 3. Fraction of space fbr covered by branches taller than
the arbitrary cutoff Icut � 10, as a function of scaled time t=t0.
Again, correct scaling is observed under changes of the poten-
tial strength v0. The slope of the solid line is the analytical
prediction 2� � 0:34 of Eq. (11).
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FIG. 4. Cumulative probability distribution
R
1
Ib
dI0bP�I

0
b� of

intensities Ib at a fixed scaled time t=t0 � 2:2. The slope �2
of the solid line is the theoretical prediction of Eq. (12). Note
that the power-law behavior breaks down as we approach the
maximum intensity from Eq. (10), Imax

b � e4:5 for b � 0:0003
and Imax

b � e5:5 for b � 0:000 03.
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length in the quantum or wave problem. Equation (11)
may alternatively be interpreted as giving the cumulative
distribution of intensities at a fixed scaled time t=t0:Z 1

Ib

dI0bP�I
0
b� � exp

�
�2�

t
t0

�
I�2
b ; (12)

i.e., P�Ib� � I�3
b . This power-law behavior remains valid

until we reach the maximum intensity as given by Eq. (10).
The I�3

b falloff means that tall branches do not affect the
average intensity, but the mean squared intensity or in-
verse participation ratio is logarithmically divergent in
the smoothing scale b. The predicted power-law intensity
distribution at fixed time is tested numerically in Fig. 4.

By explicitly tracking all caustic locations for the
classical dynamics in Fig. 4, we have also checked that
the fraction of large intensities Ib that come from
branches associated with caustics ranges from 98:7% for
lnIb � 2 to 99:8% for lnIb � 4, while only 3:8% of space
overall is covered by such branches at time t=t0 � 2:2.
This again provides confirmation that caustics dominate
the tail of the intensity distribution.

Our classical results for the branching statistics can be
directly transcribed to the quantum context once we
understand the smoothing scale beff implied by the un-
certainty principle in the quantum case. The parabolic
structure of the classical manifold near a fold at �y�; p�

y�
takes the form y� y� � ��py � p�

y�=p
typ
y �2, where ptyp

y is
the typical value of the transverse momentum, ptyp

y �
v0t1=2 � v2=3

0 �t=t0�1=2. The area enclosed by the fold
then scales as �y� y���py � p�

y� � �y� y��3=2ptyp
y �
184103-4
�y� y��3=2v2=3
0 . Setting this area to �h and dropping fac-

tors of order unity, we finally obtain y� y� � �h2=3v�4=9
0 ,

i.e., caustics in quantum mechanics do not get resolved
below an effective smoothing scale,

beff � �h2=3v�4=9
0 : (13)

Data from typical quantum calculations appear as solid
curves in Figs. 2– 4. The frequency of the above average
intensities in the quantum calculation is consistently
higher than in the classical approximation, since quan-
tum fluctuations must be superimposed on the classical
caustic structure; this is especially visible in Fig. 4.

In summary, we have made progress towards a quanti-
tative understanding of branching behavior for flow in a
random correlated potential. The key conditions of applic-
ability of these results are (i) a weak random potential
v0=EF � 1, (ii) a focus on distance scales of the order of
the Lyapunov length, LLyap � 
�v0=EF�

�2=3, where 
 is
the correlation scale of the potential, and (iii) in the
quantum case beff no larger than 
 to allow for a simple
semiclassical treatment of the caustics. We mention in
conclusion that the behavior of the branching statistics
does not depend on the details of the random potential,
since to leading order in v0=EF these may be absorbed
into the typical time scale t0 [11].
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