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Gap Bifurcations in Nonlinear Dynamical Systems
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We investigate the dynamics generated by a type of equation which is common to a variety of
physical systems where the undesirable effects of a number of self-consistent nonlinear forces are
balanced by an externally imposed controlling harmonic force. We show that the equation presents a
new sequence of bifurcations where periodic orbits are created and destroyed in such a nonsimulta-
neous way that may leave the appropriate phase-space occasionally empty of fundamental harmonic
orbits and confined trajectories. A generic analytical model is developed and compared with a concrete
physical example.
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the time, r � x � y is the magnitude of the transverse
(with respect to a certain z axis) radius of the ion orbital H�p; r� � p2=2� k�s�2 r2=2�U�r�;

(2)
There is a type of equation which is very common to a
variety of physical systems. It essentially describes the
combined action of a number of nonlinear force terms
along with a time dependent harmonic force on the dy-
namics of an s-dependent radial-like physical quantity
r � r�s�. While the nonlinear forces encompass self-
consistently generated repulsive effects which tend to
disorder and eventually destroy the system, the harmonic
force models limiting effects externally imposed in order
to control the system. The equation reads

d2r

ds2
� k2�s� r � F�r�: (1)

k�s� is a periodic function satisfying k�s� 1� � k�s�,
with time average k2�s� � k20; k0 is constant and the
period has been normalized to the unity. F�r� contains
all nonlinear forces acting on the system—including
inertial forces such as angular momenta—and must be
such that enforces the radial condition r � 0; we simply
take F as a hard-core-type force satisfying F�r ! 0� !
�1. We also require that F�r ! 1� ! 0 since this con-
dition enables the theory to describe a large number of
systems with decaying fields as in the cases of Coulombic
or gravitational interaction. This condition also guaran-
tees that one has at least one equilibrium when k�s� is
constant, k�s� � k0, which we suppose to be the only one
available. We also observe the twist condition [1] and
suppose that the frequency curve measured from the
equilibrium—again when k�s� � k0—is a monotonic
function of the appropriate action, which in practice
results from all the previous hypothesis.

The purpose of the present Letter is to introduce and
analyze bifurcations of Eq. (1) along the lines to be
explained shortly. We first mention that one instance
where Eq. (1) can be found is in the case of a Paul trap,
a device designed to confine ions [2– 4]. Here s is simply����������������

2 2
p
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trajectory, and F incorporates the ion-ion electrostatic
interaction within the trap in the form F	 1=r2 [3].
Another example comes from the area of physics of
beams, where an equation such as Eq. (1) is obtained
for the axially symmetric envelope of particle beams
confined by external solenoidal magnetic fields [5,6]. s
in this case represents the z coordinate along which the
beam is transported, k�s� represents the action of a con-
fining external magnetic field, and F incorporates ther-
mal and self-consistent effects of the beam: F �
1=r3 � K=r where K is known as the beam perveance
associated with self-fields and where the cubic term de-
scribes thermal emittance. Self-fields and emittance are
defocusing factors that must be compensated with the use
of focusing magnetic fields.

Now, it is a matter of interest to determine orbits
displaying the same periodicity of the external field de-
scribed by the parameter k�s�; we shall refer to these
orbits as the fundamental harmonic orbits (FH orbits
for short). In electrostatic confining devices FH orbits
are known as � orbits, and in physics of beams they are
known as matched solutions. We dedicate this Letter to
the analysis of possible bifurcations that either destroy or
create FH orbits. In particular, we shall see that depen-
ding on the relevant parameters, gaps may be formed as
one changes the confining fields, within which no FH
orbits are present. This fact had already been numerically
recognized in a previous work [6]. Here we generalize the
concept and provide an analytical framework for the
whole nonlinear process which we call gap bifurcation,
for short, when gaps are indeed created.We shall see how a
gap bifurcation is related to creation and extinction of
periodic orbits.

Equation (1) can be canonically derived from the
Hamiltonian principle

r0 � @H=@p � p; p0 � �@H=@r;
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where F�r� � �dU=dr and where primes denote deriva-
tives with respect to s from now on. When k�s� � k0 the
system becomes integrable, but even in this case for a
generic U�r� it is very unlikely that we can find closed
analytical solutions for the problem. Since the gap effect
we intend to explore here is independent of the minute
details of U, let us resort to an approximative approach.
First we note that in the static case k�s� � k0, a central
fixed point r0 can be obtained as the solution of r00 � 0 )
�k20r0 � F�r0� � 0. Orbits oscillate around r0 bounded
by minimum and maximum elongations at r0 � p � 0;
rmin and rmax, respectively. Each orbit can be indexed by
the corresponding action J alluded to earlier, such that
increasingly larger values of rmax or smaller values of rmin

are both associated to increasingly larger values of J. The
oscillatory frequency for orbits near the fixed point can
be found in the form ! � !0 � �k20 � dF=drr�r0�

1=2, and
the frequency of oscillations with maximum elongation
satisfying rmax ! 1 or rmin ! 0 reads ! � !1 � 2 k0.
!1 has this particular form if one considers that while for
large r’s F has no effect on the orbit which therefore
moves harmonically, for small r’s the hard-core portion
of F builds up a reflecting intransposable barrier—hence
the factor of ‘‘2’’ in !1. The idea here is to see if periodic
orbits with the same periodicity of the driver can be
created. Periodicity can be better analyzed with help of
action-angle coordinates. Using our hypothesis on the
monotonicity of the frequency curve ! � !�J�, one can
interpolate a convenient formula between the central and
asymptotic frequencies !0 and !1 as follows:

!�J� � !0 � 
"J �1� "J��1; (3)

where 
 � !1 �!0, and " > 0, yet undetermined, ac-
counts for the rate with which the frequency changes with
the action J. Then the unperturbed Hamiltonian H0�J�
can be obtained as

H0�J� �
Z J

J0�0
!�J0�dJ0 � �k0 �
�J� "�1 
ln�1� "J�:

(4)

The factor " can be obtained as soon as one has concrete
information on the form of H�p; r; k � k0� expressed in
terms of the corresponding action variable for small
values of this action and k � k0, and this can be done
perturbatively. Then it is a simpler matter to evaluate " �
�1=
� @2H�k � k0�=@J

2jJ�0. We shall analyze one con-
crete case shortly but for now let us switch on the varying
contribution of the external field with k2�s� � k20 �
�k20 cos2�s, and analyze the existence and bifurcations
of FH orbits. � is a constant amplitude factor satisfying
0 � � � 1 and we choose a periodic harmonic function
for simplicity—results arising from other periodic func-
tions are qualitatively similar. We write

H�p; r� � Hu �Hp (5)

with Hu � p2=2� k20r
2 �U and Hp � k20 � cos�2�s� r2.
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Hu is replaced with H0 of Eq. (4) and r is written in the
form r � r0 � w. Now we need an expression for w in
terms of action-angle variables, w � w�J; ��. If w is
small, this poses no problem and we can simply write

w �
��������������
2J=!0

p
cos� and p � �

��������������
2J=!0

p
sin� (6)

because orbits are nearly circular near the equilibrium at
r � r0, p � 0. When w is large, on the other hand, we
have seen that the motion is similar to that of an oscillator
blocked at the origin. The oscillator moves freely when
w > 0, but is reflected at the origin. Therefore we attempt
to represent its orbit in the form

w � A�J�j cos��=2�j; (7)

as � moves from �� to �� crossing � � 0, w goes from
w � 0 at � � ��, crosses its maximum, A�J�, at � � 0,
and returns to w � 0 at � � ��—the cycle is repeated
then. A�J� is determined when one realizes that for large
values of J and at maximal radius rmax, where p � 0 and
� � 0, Hu � !1 J � k20A�J�

2=2 which implies A�J� ����������������
8J=!1

p
. This is different from the purely harmonic

case where one would have a multiplying factor of ‘‘2’’
instead of ‘‘8’’ under the square root in the expression for
A�J�. We now proceed to construct the resonant Hamil-
tonian for the FH orbits. When J is small one uses
expressions (6) in Hp and collects only those harmonic
terms with argument �� 2�s:

Hp�J ! 0� � �1=2�� k20 r0
��������������
2J=!0

p
cos��� 2�s�: (8)

When J is large, we select the more significant r2 term
and write

Hp�J ! 1� �
1

2
�k20

�
8J
!1

�
cos2��=2� cos�2�s�

�
1

4
�k20

�
8J
!1

�
�1� cos�� cos�2�s�

! �k20

�
J
!1

�
cos��� 2�s�; (9)

where we dropped off-resonant terms in the last step
again. Now we do not know the crossover details from
expression (8) to (9), although the issue lacks importance
here. The reason is that for small J the

���
J

p
term automati-

cally dominates, while for J large it is the linear J term
that automatically prevails. In any case we use the addi-
tional canonical transformation �� 2�s ! � and
H�J; �� � 2�J ! hres to write a final form

hres � H0�J� � 2�J� �k20

�
r0
2

������
2J
!0

s
� f�J�

J
!1

�
cos�;

(10)

where we introduce a crossover factor f modeled by
f�J� � J�=�1� J��, with � to be chosen in order to refine
the already nice agreement with simulations of Eq. (1).
FH orbits are resonances at the fundamental harmonic
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which manifest themselves as fixed points of the dynam-
ics entailed by hres. Fixed points are defined in the form
�0 � J0 � 0, and from Eq. (10) along with the proper
canonical equations this demands:

����
fixed � 0; ����

fixed � �; g� �
d
dJ

hres�J; �
���
fixed� � 0: (11)

Set (11) along with the resonant form (10) is basically
where we wish to arrive. As far as overlap with other
resonances not being significant, the set provides all the
analytical information on bifurcations occurring with
harmonic resonances. The task we have ahead is to in-
vestigate its content and compare it with simulations
based on Eq. (1). As stated earlier, set (11) tells us that
fixed points can be seen as zeros of functions g�. These
functions are parametrized by several control factors and
their shapes depend on those factors. Perhaps the most
adequate procedure here is thus to draw the functions g�
against the running argument J and examine its behavior
as we vary these control parameters.We note initially that
the functions have some general properties. When � � 0
they satisfy g��J� > g��J�, g��J ! 0� ! �1, and
g��J ! 1� 	 2 k0 � 2�� � k0=2 which indicates an
asymptotic separation of the form g� � g� ! � k0 �

g as J ! 1. It is true that g� or g� have curvatures,
but if 
g is sufficiently large, the minimum of g� will lie
above the maximum of g�. Under these circumstances a
gap will be formed within which no fixed point for the
harmonic resonance can be found and this is the case we
refer to as gap bifurcation. All this is of relevance if one is
interested in finding FH orbits. To have an idea of the
necessary conditions for gap formation, one can think as
follows. Consider 
 > 0—the reasoning is similar if

< 0. g� then monotonically increases with J but curve
g� does not when � � 0. As one approaches J � 0 from
large (and positive) values of J, the unperturbed fre-
quency !�J� provides a negative contribution to function
g� while the � contribution is positive as explained ear-
lier. Therefore a minimum may be formed if the �=

���
J

p

term is still small when the curvature due to !�J� is
noticeable, i.e., at J	 1=". Then one concludes that the
minimum is present when

"
1="
1� "�1="�

*
� k20 r0������������
!0="

p ) 
 * 
c � �k20r0

������
"
!0

r
; (12)

there is no minimum if 
 � 
c. The gap is always
present in the absence of a minimum since in this case
g� decreases monotonically as J increases. When the
minimum is present and well pronounced, on the other
hand, the gap exists if 
g > 
 since in this case the
downwards curvature of g� is smaller than the asymp-
totic separation between g� and g�.

From the discussion above, it is clear that the presence
of gaps is a direct result of the asymmetry provided by the
‘‘centrifugal’’ or hard-core portion of F�r�. This hard-
core contribution shifts the equilibrium from the origin to
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some point along the r0 � 0 axis and blocks the dynamics
at r � 0 such that a representation like the one of Eq. (7)
becomes true. It is this kind of representation, combined
with the dominant r2 term, that generates the 
g separa-
tion and the possibility of the gap bifurcation. In that
sense, Hamiltonian (2) is in fact structurally unstable
because any modification on the r dependence of the
term multiplied by k�s�2 will affect the asymptotic be-
havior of the theory and the onset of the gaps. However, if
one is interested in limited ranges of variation for r, as it
is typically the case in practical systems, the quadratic
approximation should be sufficiently accurate.

Up to the present point no mention was made of any
particular system so the results are general. But now we
finally test the theory against simulations of the original
Eq. (1). In the simulations we launch several initial con-
ditions at p � 0, integrate forward these conditions until
their next to first return to p � 0, and compute the asso-
ciated s interval S. From the integration we obtain the
approximate differential frequency ! � 2�=S � 2�—
which are equivalent to curves g� —and the approximate
action J � �1=2��

H
pdr � �1=2��

R
S
0 p

2ds. The results
are then compared with those obtained from the set (11).
We superpose the computed results with the estimates in
the same figure. To perform the comparisons we analyze a
concrete case of beam transport. We choose two sets of
values for the control parameters K, k0, and � in order to
cover all the relevant possibilities. It will be shown in a
future publication how " is obtained as outlined just after
Eq. (4); � � 0:5. Let us start with Fig. 1(a) where K �
0:5, k0 � 182:73

�
, and � � 0:03. In this case 
=
c �

3:43	O�1� and 
�
g � �0:13 > 0, so we expect to
see a nonmonotonic g� function and the absence of the
gap. This is what Fig. 1(a) indeed reveals. Both analytical
calculations and simulations indicate the absence of gap
and the presence of a prominent downwards curvature of
g�. The two branches of ! correspond to initial condi-
tions launched on the right (upper branch) and left (lower
branch) sides of r0. We state here that the entire set of
curves basically shift vertically upwards without any
appreciable changes of its shape as k0 rises within narrow
ranges. Figure 1 allows one to conclude that two of the
three fixed points present in the system are either born or
vanish through tangent bifurcations [7] and that the tan-
gencies do occur while the third point is already present
in the system (s1;2 denotes the two stable points and u the
unstable one). We then look at a complementary situation
where tangencies and gaps are simultaneously present;
this is done with the help of Fig. 1(b) where K � 3:0, k0 �
180

�
, and � � 1:0 with 
=
c � 0:5	O�1� and 
�


g 	�2:11< 0. Here the separation 
g is chosen large
enough that the curvature of g� is not sufficient to close
the gap. As we increase k0 both fixed points associated
with g� undergo an inverse tangency and no fixed point
survives until the one associated with g� makes it ap-
pearance later on. In Fig. 2 we briefly compare the nu-
merically obtained differential frequencies !, but now
184102-3



-1.0

-0.5

0.0

0.5

1.0

0.0 0.4 0.7 1.1 1.4 1.8

ν

r

us
1

s
2

(a)

-15

-10

-5

0

5

1 0

1 5

0.0 0.4 0.7 1.1 1.4 1.8

p

r

us
1

s
2

(b)

FIG. 2. A comparison of ! curves with the phase plot using
the same parameters as Fig. 1(a).
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represented as functions of the coordinate r, with
Poincaré plots on the phase-space p vs r. All the parame-
ters are the same as the ones used in Fig. 1(a); in Fig. 2(a)
we plot the simulated differential curves ! vs r and in
Fig. 2(b) we display the corresponding Poincaré plot.
Inspection shows how accurately the position of fixed
points have been determined with the analytical model.
Further plots corresponding to parameters of Fig. 1(b)
show only orbits escaping to �1, which clearly corre-
sponds to the absence of entrapping fixed points within
the gap, in accordance to the model theory. Figure 1
provides a graphic way to visualize the bifurcation: the
distance between g� and g� is essentially set by 
g and
K, and the birth, existence, and extinction of FH orbits
result from k0 variations as an ordered sequence of local
saddle-node bifurcations and saddle nodes at r ! 0 and
r ! 1, involving orbits of different origins [bifurcation
diagrams can be obtained from Fig. 1]. Gaps are formed
when orbit extinction occurs before new orbits are created
and this results in a global process since then all closed
orbits present for sufficiently small and large values of k0
undergo a flow rearrangement and open up within the gap.
Given its global character the bifurcation is not only a
mathematical technicality, being of direct physical rele-
vance: gaps must be avoided in physics of beam, for
instance, since they establish a parametric region within
which the beam radius would grow without bounds as
discussed in Ref. [6].

To conclude, we have analyzed the dynamics dictated
by a class of equations of the form given by Eq. (1), which
184102-4
is very common to a variety of physical systems. It was
shown that under some very general restrictions, gaps
may exist as we vary the relevant control parameters
within which no solution displaying the same periodicity
of the external drive can be possible. We call this non-
linear mechanism gap bifurcation. Knowledge of the gap
is of relevance in characterizing the stability of the sys-
tem, and is crucial at least in the case of confining devices
such as beam transport systems and Paul traps, whose
relevant dynamics is described by radial-like equations
such as Eq. (1).
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