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Triple Point of Nuclear Deformations
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We show that the second-order phase transition between spherical and deformed shapes of atomic
nuclei is an isolated point following from the Landau theory of phase transitions. This point can occur
only at the junction of two or more first-order phase transitions which explains why it is associated with
one special type of structure and requires the recently proposed first-order phase transition between
prolate and oblate nuclear shapes. Finally, we suggest the first empirical example of a nucleus located at
the isolated triple-point.
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FIG. 1. The extended Casten triangle [15] and its different
phases. The circles indicate the location of the IBM dynamical
symmetries. The solid dot in the center represent the second-
order transition between spherical nuclei (phase I) and de-
formed nuclei with prolate (phase II) and oblate (phase III)
forms. The dashed lines correspond to first-order phase
Ginocchio [12], Feng [13], and their collaborators. Feng, transitions.
Phase transitions in finite quantal systems are a chal-
lenge to theoreticians and experimenters [1]. One of the
reasons is that it is not clear how they manifest them-
selves empirically. This is especially true for phase tran-
sitions involving a small number of interacting bodies,
such as the constituents of an atomic nucleus. Quantum
phase transitions in nuclei concern, for example, the
geometric shape associated with the ground state. These
transitions take place at zero temperature and depend on
the number of nucleons.

Nuclear shape phase transitions came again to the fore-
front of nuclear structure physics when recent �-decay
studies [2] led to a new interpretation [3,4] of the
spherical-deformed transitional region (N � 90 nuclei)
as a first-order phase transition. Soon thereafter,
Iachello developed new symmetries that describe atomic
nuclei at the critical points [5,6]. These symmetries,
called X(5) and E(5), are obtained within the framework
of the collective model [7] under some simplifying
approximations. Remarkably, the parameter-free pre-
dictions provided by the new symmetries are closely
realized in some nuclei, such as 152Sm and 134Ba,
respectively [8,9].

The geometric shape of the ground state can be con-
veniently described by three Euler angles defining the
orientation of the deformed nucleus in space, and by the
quadrupole deformation parameters � and � [7]. Many
models for nuclear structure therefore express the poten-
tial in terms of an expansion in � and �. Although the
results to be obtained below follow from any such model,
for specificity, we will use the interacting boson model
(IBM) [10], since it allows the treatment of the finite
number of nucleons in the nuclear many-body problem.
The IBM describes even-even nuclei in terms of interact-
ing valence nucleon pairs with angular momenta L � 0 (s
bosons) and 2 (d bosons) and incorporates an explicit
dependence on the number of valence nucleons. Phase
transitions in such systems were intensively studied in
the early 1980s in the pioneering works by Dieperink [11],
0031-9007=02=89(18)=182502(4)$20.00 
Gilmore, and Deans [13] discussed the IBM phase struc-
ture in terms of a first-order phase transition terminating
in an isolated point of a second-order phase transition.
Recently, it was shown [14,15] that the model exhibits an
additional, previously unrecognized, first-order prolate-
oblate phase transition.

It is the purpose of the present Letter to analyze the
nuclear shape phase diagram in terms of the Landau
theory of continuous (second-order) phase transitions
[16,17]. We will show that, in the realistic nuclear case,
a second-order phase transition can occur only as an iso-
lated point where there is a junction of at least two first-
order shape phase transitions and that, therefore, the
nuclear shape phase diagram must have both spherical-
deformed and prolate-oblate first-order phase transitions.
Thus, the Landau theory of continuous phase transitions,
constructed almost 70 years ago for infinite classical
systems, is shown to be a useful approach also for finite
quantal systems such as the atomic nucleus. (Note that the
2002 The American Physical Society 182502-1
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Landau theory of phase transitions was already applied in
nuclear physics in another context, hot rotating nuclei, by
Alhassid et al. [18]). Our observations will also allow the
introduction of the concept of a triple point for nuclear
deformation and the identification of a corresponding
triple-point nucleus.

Let us consider a standard two-dimensional paramet-
rization of the IBM-1 Hamiltonian:

ĤH�N;
; �� � 
 n̂nd �

� 1

N
Q̂Q� � Q̂Q�; (1)

where n̂nd � dy � ~dd is the d-boson number operator and
Q̂Q� � 	dys� sy~dd
�2� � �	dy � ~dd
�2� the quadrupole op-
erator. N in the denominator stands for the total number
of bosons (integral of motion) and ensures a convenient
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scaling. Control parameters 
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ter space can be naturally represented by the extended
Casten triangle [15] (see Fig. 1) whose 
 � 1 vertex
corresponds to the U(5) dynamical symmetry (spherical
shape), while the dynamical symmetries SU(3) (prolate),
O(6) (�-soft), and SU�3� (oblate) are located on the 
 � 0
side: SU(3) and SU�3� at the � � �
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7

p
=2 and � �
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=2 vertices, respectively, O(6) at � � 0. The halves

of the triangle with positive and negative � are related by
the � $ �� parameter symmetry [19].

The geometric interpretation of the Hamiltonian (1)
can be derived by the method of Gilmore [20]
using the s; d-boson condensate states jN��i defined
in Ref. [21]. The energy functional E�N;
; �;�;�� �
hN��jĤH�N;
; ��jN��i:
E�N;
; �;�;�� � �5�1� 
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(2)
encodes several phase-transitional phenomena [22] de-
scribed in a general framework within the Landau theory
of phase transitions [16,17]. Instead of the thermody-
namic potential ��P; T; �� that depends on external pa-
rameters (pressure P and temperature T) and the order
parameter �, as investigated by Landau, we have
E�N;
; �;�;�� depending on the external parameters 

and �, and on the order parameters � and �. The task is to
minimize the functional by varying � and � for each 

and �— the optimal values being denoted �0�N;
; �� and
�0�N;
; ��. The simple form of the dependence on � in
Eq. (2) yields either �0 � 0 (for negative �), or �=3 (for
positive �). The latter case can be equivalently described
by a substitution �0 ! 0 and �0 ! ��0 which allows us
to omit the parameter � from further considerations by
imposing the constraints �0 > 0 for �< 0 and �0 < 0 for
� > 0. These values distinguish prolate and oblate defor-
mations, respectively, while �0 � 0 corresponds to the
spherical symmetry.

The ground-state energy obtained from the global
minimum of the energy functional E�N;
; �;�0� must
be a continuous function of 
 and �, similarly as the
thermodynamic potential in the equilibrium configura-
tion �0 is a continuous function of P and T. However, the
derivatives of E�N;
; �;�0� or ��P; T;�0� with respect
to the control parameters do not have to be continuous.
Discontinuities in the first or second derivatives result in
first- or second-order phase transitions, respectively, the
latter case being also called a continuous phase transition
[16,17]. Thus, first-order transitions are characterized by
a singularity in the specific heat CP � �T@2�=@T2,
giving a nonzero latent heat. This corresponds to a situ-
ation when the optimal order parameter �0 or �0 jumps
discontinuously from one value to another at the phase
transition. For the second-order transitions the latent heat
vanishes and the optimal configuration changes continu-
ously (although not smoothly).

In Landau theory, the potential � is expanded as

��P; T; �� � �0 � A�P; T��2 � B�P; T��3

� C�P; T��4 � . . . : (3)

Analyzing the behavior of this function for transitions
between more symmetric (�0 � 0) and less symmetric
(�0 � 0) phases, it is found that first-order phase transi-
tions form continuous lines in the P� T plane, while
second-order transitions occur either along continuous
lines or at isolated points. The former is the case only if
the coefficient B vanishes identically for all P and T. If
this is not so, the conditions for the second-order tran-
sition read as A � 0, B � 0, and C > 0, giving isolated
solutions P � Pc and T � Tc. These points can only be
located at intersections of two or more curves corre-
sponding to first-order phase transitions. In the simplest
case, the second-order transition takes place at the triple
point of three phases—see Fig. 65(a) in Ref. [17]. Phase I
has the higher symmetry (�0 � 0) while phases II and III
with lower symmetry differ just by the sign of �0. Landau
remarks that such isolated points forming a second-order
phase transition had not been observed in nature.
However, as we will see below, atomic nuclei provide
evidence for their existence.

Landau theory is perfectly applicable to the energy
functional (2). Expanding �1� �2��2 � 1� 2�2 �
3�4 � 4�6 � . . . , and adopting the convention with
182502-2
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FIG. 2. Energy surfaces (in the � � 0 plane) before and after
the phase transition as a function of � for (a) second-order and
(b) first-order phase transitions.
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� � 0 we can write

E�N;
;�;�;�� � E0�
��A�N;
;���2 �B�N;
;���3

�C�N;
;���4 � . . . ;

(4)

where, clearly, B�
;�� is generally nonzero. Thus, from
the above discussion, the second-order phase transition
between spherical and deformed nuclear phases can take
place only at isolated points of the 
�� plane. Indeed,
there is just one such point, located on the connection of
the U(5) and O(6) dynamical symmetries, namely, at ��
0 and 
� 
trip�N� � �4N� 8�=�5N� 8� in the parame-
trization of Eq. (1). As shown in Fig. 1, this is the triple
point of the nuclear shape phase diagram since the spheri-
cal phase (�0 � 0) exists for 
>
trip while for 
<
trip

two deformed phases (prolate, �0 > 0, and oblate,
�0 < 0) are separated by the line �� 0. Except at the
triple point, the transitions between spherical and de-
formed (prolate/oblate), and between deformed prolate
and oblate phases are of the first-order, conforming to
Landau theory.

For � � 0, that is, anywhere except along the U(5)-
O(6) line in Fig. 1, the deformed-to-spherical transition
proceeds in the following way: When 
 increases to the
value �4N � �2 � 8�=�5N � �2 � 8� � 4=5�O�1=N�,
the potential develops a minimum at � � 0 (A becomes
positive). At first, however, this minimum is only local,
the global minimum being still situated at �0 � 0. Both
minima become degenerate at 
 � 
c�N;��:


c�N;�� �
4� 2�2=7

5� 2�2=7
�O

�
1

N

�
; (5)

which defines the real phase separatrix between spherical
and deformed (prolate or oblate) shapes for the
Hamiltonian (1). For �� 0 we have 
c�N;0� � 
trip�N�.
In this case, the deformed minimum �0 converges to 0 for

!
trip conforming to the law �0j��0� /�

���
"

p
	1�

O�"�
, where "� �
trip �
�=
trip. Thus the critical ex-
ponent [23,24] for �0 at the triple point is �� 1=2. Note
that this behavior is in perfect agreement with general
predictions derived in Ref. [16]. At the triple point, the
potential does not develop the double-well form. Indeed,
as a general rule, phase coexistence can be found only in
first-order phase transitions [17,23,24].

Concerning the prolate-oblate transition �0 ! ��0 at
� � 0 and 
< 
trip we recall that the negative-� part of
the energy functional just represents the � � �=3 cut of
the energy surface (2). To speak about a double-well form
of the energy functional in � would be misleading, be-
cause the higher minimum is only an unstable saddle
point in the �� � plane. When crossing � � 0 the sur-
face becomes totally flat in � and then the saddle points
and real minima are exchanged. The prolate-oblate phase
transition is a first-order phase transition since for 
<
182502-3

trip the energy minimum moves discontinuously from
�0 to ��0. At the triple point, again, the transition
becomes of the second order. The behavior of the de-
formed minimum along the spherical-deformed phase
separatrix 
 � 
c�N;�� reads as �0j
�
c�

/ ���
O��2� for small �.

The difference between second- and first-order phase
transitions between spherical and deformed nuclei is
founded in the different behavior of the energy surface
near the phase transition. For the second-order transition,
it evolves as in Fig. 2(a) (similar to Fig. 63 of Ref. [17]).

Such a phase transition occurs (at low energy and spin)
only when gamma softness is preserved throughout. In
the first-order transition, as noted above, a lower symme-
try (deformed) metastable minimum exists ‘‘before’’ the
phase transition while, ‘‘after,’’ the higher symmetry
(spherical) minimum is the metastable state. This is illus-
trated in Fig. 2(b).

Microscopically, the first-order phase transition be-
tween spherical and deformed nuclei typically arises
when there is a subshell gap such that the particle-hole
excitations across the gap produce a more deformed con-
figuration (at a cost in energy). The energy of this con-
figuration is lowered as more valence nucleons are added
due to the eradication of the gap by attractive monopole
p-n interactions [25,26]. Equilibrium deformation ensues
when the deformed configuration crosses the spherical
(dashed curve in Fig. 2(b)). The clearest first-order phase
transitions are quite rapid as a function of nucleon
number (e.g., near N � 60; 90), especially compared to
second-order phase transitions (such as those near A �
130), but this need not be the case.

The above analysis of the nuclear phase diagram al-
lowed us to clarify the results of Refs. [14,15] directly
from the Landau theory. It provides a new perspective on
the evolution of nuclear structure and gives new meaning
to the earlier association of 134Ba with the E(5) symmetry
[9] (whose predictions for an infinite potential well are
the analog of the IBM results close to the second-order
phase-transitional point). In the new view 134Ba is, in
fact, the first example of a triple-point nucleus. Other
candidates occur in the A � 100 mass region.
182502-3
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In conclusion, we have explained, using Landau theory
of second-order (continuous) phase transitions, why the
nuclei at low spin exhibit an isolated second-order phase
transition and why they therefore exhibit two lines of
first-order phase transitions meeting at the second-order
transition. In agreement with the Landau theory, these
transitions are between higher and lower symmetries
(spherical and deformed) and between symmetries char-
acterized by opposite signs of the order parameter (pro-
late and oblate). We stress that, although we have used
the IBM, all these results are quite general for any col-
lective model where the energy functional can be ex-
panded as in Eq. (4). Thus, the classical results also
apply to the quantum mechanical case. This study allows
the definition of a triple point for nuclear shape transi-
tions and suggests 134Ba as the first example of a triple-
point nucleus.
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